

LOFAR Short and Long Baselines

Corina Vogt LOFAR/ASTRON, Dwingeloo (Netherlands Foundation for Research in Astronomy)

LOFAR sensor network

LOFAR network -Radio astronomy

LOFAR - phased array telescope

- Telescope the size of the Netherlands
- Frequencies: (10) 30 240 MHz
- 10% Square Kilometer Array (SKA) prototype at

low-frequencies

- Interferometer baselines: 100 km
- European Expansion to 1000 km

LOFAR network -Radio astronomy

- Aperture array: Replace big dishes by many cheap dipoles
 - 77 stations of dipoles antenna + extra sensors (geo+agro)
 - No moving parts: electronic beam steering
 - supercomputer synthesizes giant dish
- Current Funding: 74 M€
- Two orders of magnitude improvement in resolution and sensitivity
- Lots of science applications to be done as we will discuss

LOFAR - phased array telescope

LOFAR Radio antennas

Low band antenna: 30 – 80 MHz 96 antennas per station

High band antenna:120 – 240 MHz 96 tiles per station 4x4 antennas per tile

LOFAR Science Drivers

- Epoch of Reionization Groningen
 - PI: Ger de Bruyn
- Extragalactic Surveys Leiden
 - PI: Huub Röttgering
- Transients and Pulsars Amsterdam
 - Pl's: Rob Fender, Ralph Wijers, Ben Stappers
- Cosmic Rays Nijmegen
 - PI: Heino Falcke, Jan Kuijpers

LOFAR Configuration (I)

LOFAR Configuration (II)

Core Station Lay-Out

LOFAR UV coverage

Snapshot

-0.5 - +0.5 hrs

LOFAR Summary

System parameters		Value	
Frequency range		30 - 80 MHz (low band)	
		120 – 240 MHz (high band)	
Polarisations		2	
Bandwidth		32 MHz	
Spectral channels		42240	
		52736 (with 160 MHz Sample Rate)	
Stations		32 in compact core	
		45 remote	
Baseline length		100m to 100 km	
Baselines	_	2926 Full stokes	
Simultaneous	Full array	Configurable between	
digital beams (full		1 beam of 32 MHz and	
array)		8 beams of 4 MHz	
	Central Core	24 beams of 32 MHz	
Digital signal paths		14784 (2 pol x 96 channels per station)	
Sample bit depth		12 bit	
Correlator capacity		399 10 ⁹ Correlations/sec	
Tied array beamformer capacity		128 beams (full array)	
Storage capacity		5 days raw data	
		1 month reduced data	
Data export capacity		20 Gbit/s = 200 TByte/day	
Spectral resolution		0.76 kHz	
		0.61 kHz (with 160 MHz Sample Rate)	
Correlator dump time		1 second	

Imaging Performance

v/MHz	λ/m	Beam Size		Effective collecting area		T _{rec} /K
		Core	Full Array	Core	Full Array	
30	10	21'	25"	8.0·10 ⁴ m ²	1.9·10 ⁵ m ²	max 20% T _{sky}
75	4	8.3'	10"	1.2·10 ⁴ m ²	2.9·10 ⁴ m ²	max 20% T _{sky}
120	2.5	5.2'	6.0"	8.6·10 ⁴ m ²	2.0·10 ⁵ m ²	130
200	1.5	3.1'	3.5"	6.6·10 ⁴ m ²	1.6·10 ⁵ m ²	190

λ/m	Point Sour	ce Sensitivity	Primary Beam	
	Core	Full Array	(50 m station)	
10	4.8 mJy	2.0 mJy	11.5°	
4	3.3 mJy	1.3 mJy	4.6°	
2.5	0.19 mJy	0.07 mJy	2.9°	
1.5	0.07 mJy	0.03 mJy	1.7°	
	λ/m 10 4 2.5 1.5	λ/m Point Source Core Core 10 4.8 mJy 4 3.3 mJy 2.5 0.19 mJy 1.5 0.07 mJy	λ/m Point Source Sensitivity Core Full Array 10 4.8 mJy 2.0 mJy 4 3.3 mJy 1.3 mJy 2.5 0.19 mJy 0.07 mJy 1.5 0.07 mJy 0.03 mJy	

1 hr, 2 pol., 4 MHz

Observing Modes

- Synthesis Imaging
 - Standard Data Products: uv-data; image cubes
 - Complication: station beams not constant
- Transient Detection
 - Based on snap-shots for the shortest periods
 - Sub-Band data can also be buffered
- Tied Array beamforming
 - Incoherent
 - Coherent
- Antenna-based Buffering
 - 1 sec at full-digitised bandwidth
 - detection/triggering for CR

Purpose of CS1

- Procurement Process
- Roll-out of a station (cost/time/planning)
 - digging trenches
 - laying fibres
 - installing hardware
 - tests
- Engineering Tests
- Scientific Tests

- Hardware of 1 station
- Distributed over 4 station locations
- 12 Gbps connection to Groningen
- Downscaled Central Processing installation

- Operational Autumn 2006 with final prototype hardware
- 96 dual-dipole antennas:
 - grouped in 4 clusters
 - one cluster with 48 dipoles
 - three clusters of 16 dipoles
 - distributed over ~ 500m.
 - with 24 microstation in total
 - of 4 dipoles each

- Goal: Emulate LOFAR with 24 micro-stations at reduced bandwidth or act as a single station at full BW
- TBB & HBA will follow later
- Conclude CDR Based on CS-1 Results

Finally: A CS1 Image

HBA antennas in Exloo

First interferometric fringes between 4 HBA antennas on 5, 8, 13(2x), 21 and 26m baselines (225 MHz) 29 March 2007

RON

1st International Station Effelsberg - MPIfR

Start Roll in Nov/Dec 2006First Light in March 2007

First on-line correlation with
 Exloo expected autumn 2007

International Stations Long baselines

Activities towards an E-LOFAR in:

Germany

≻ UK

- ➤ France
- Sweden
- ➤ Italy
- Poland

E-LOFAR

E-LOFAR: uv-coverages

LOFAR

E-LOFAR

Table 1.2: Resolutions achievable with a LOFAR extended to station separations of 150, 500, 1000km.

	$\nu = 50 \text{ MHz}$	$\nu = 75 \text{ MHz}$	$\nu = 120 \text{ MHz}$	$\nu = 240 \text{ MHz}$
	$\lambda \sim 10 { m m}$	$\lambda \sim 4{ m m}$	$\lambda\sim 2.5{ m m}$	$\lambda \sim 1.25 { m m}$
$150 \mathrm{km}$	17"	6.7"	4.2"	2.4"
$500 \mathrm{km}$	5"	2"	1.2"	0.6"
$1000 \ \mathrm{km}$	2.4"	1"	0.6"	0.3"

Science to be done:

- Low-energy tail of relativistic electrons contained in radio jets
- Study the history of radio sources in the Universe (Star forming galaxies)
- Study of lensed objects
- Map HII regions of Milky Way
- Exoplanet & Solar Science

E-LOFAR: Doable?

- Time average smearing ~ τ = 0.25s
- Bandwidth smearing $\Delta v = 1 \text{kHz}$

E-LOFAR: Calibratable?

- YES!
- LBA more challenging than HBA
- It has been done before
- Wide field imaging might be limited by processing power in the beginning

Exciting times ahead

- Soon prototype HBA tiles go to Exloo
- The Transient Buffer Boards are almost ready
- Station in Effelsberg soon on-line
- Q3-2007 Q2-2008: build 20 stations + 2-3 German stations + 1 in UK
- Continuing software development (BBS)
- Complete the rest of array 2008/2009

LOFAR LOFAR Top Level Architecture: Data Flow

LOFAR History

- Initial Design
- Funding decision
- Initial Test Station
- Sub-system Critical Design Reviews
- Roll-out of first station hardware CS1

E-LOFAR: Calibratable?

Maximum isoplanatic patch size for different baseline lengths.

The Ionosphere - Scattering

Refraction of a source

Difference in refraction for two frequencies separated by 1kHz

Differential refraction of the middle plot as a function of synthesised beam width for a 1000km baseline

Frequency averaging before calibrating for the Ionosphere might not be advisable (at least for LBA)! Observations at night