Clusters and the X-ray Connection

M. Arnaud CEA - Service d'astrophysique Saclay

Monique ARNAUD

X-ray / radio connection : cluster thermo-dynamical history

Complementary information on

- AGN feedback
 - in center the CF pb
 - at large scale ?
 the entropy excess
 see R.Dunn & M.Wise this conf
- The dynamics of cluster (hierarchical) formation (this presentation)

see e.g. reviews by L. Feretti, 04,05

Fabian et al, 00, 02

Feretti, 05 adapted from Feretti et al, 01 ; Röttgering et al, 97

X-ray/radio thermal and non-thermal components

X-ray thermal - diffuse ⇒ Hot plasma (T~2-10 keV) Main baryonic component VLA 1.4GHz Clarke & Ensslin, 01

Radio synchrotron - diffuse - steep ($\alpha > 1$) \Rightarrow Relativistic electrons (~1-100 Gev) \Rightarrow Magnetic Field (0.1 - 1 μ G)

IC e- on CMB \Rightarrow Non thermal X-ray emission

Origin and acceleration of the relativistic electrons?

Ritchie & Thomas, 02

Cluster hierarchical formation => Shocks (heat the gas at T_{virial})

- Radio halos/relics detected in un-relaxed (merger) clusters only
- Problem: ~Mpc size but t_{life} ~10⁷ 10⁸ years << $t_{diffusion}$

⇒ Recent creation or (re) acceleration by a mechanism at cluster scale

Several Models - Thermal electrons accelerated by shocks /turbulence

- Non thermal electrons (from above or from AGN/Winds) re-accelerated
- Secondary electrons from inelastic collisions of NT protons with ICM

Why study the NT cluster component?

- Non thermal e- creation and acceleration mechanism not understood!
- Diagnostic information on the hierarchical formation process
 - ⇒ probe the *physics* of merger events (shocks, turbulence, redistribution of energy ...)
 - ⇒ probe the ICM *magnetic field*
 - ⇒ tracer of merger/formation *history*
- Possible impact on cosmological parameters estimate (from N(M) or f_{gas})
 - \Rightarrow May contribute to the overall pressure
 - \Rightarrow Mass > estimated from HE Eq. and $\ \mathsf{P}_{\mathsf{therm}} \,\mathsf{only}$

Need (new LOFAR) radio observations combined with X-ray information

Radio- X-ray comparison for individual clusters (I)

Constraints on models

density (radio maps) and energy (radio spectra) distribution of NT electrons

compared to that of

thermal electrons (X-ray)

Probably mostly acceleration by turbulence

Radio-X-ray comparison for individual clusters (II)

Strong(er) constraints given by spectral index maps

Flattening in region affected by merger No connection to the (weak M ~2) shock \Rightarrow re-acceleration by turbulence

 \Rightarrow mergers do supply energy to radio halo

Extend to much larger cluster samples

Radio map (α / S_{rad}) sensitive multi v imaging LOFAR

X-ray map (ne/kT/P/S) spatially resolved specroscopy XMM/Chandra

versus

Radio- NT X-ray comparison for individual clusters

Clarke & Ensslin, 01

Radio synchrotron emission: ⇒ degenerate information on B, NT e-

Faraday Rotation (B, Te-) \Rightarrow B in few directions

Polarisation

Combined with Hard X-ray = IC (NT e-) \Rightarrow break the degeneracy

 \Rightarrow compl. info on e- spectra

No imaging capability of XTE/Beppo-SAX

- \Rightarrow Global spectrum
- \Rightarrow Low S/N and ambigous

Unique spectro-imaging capabilities up to high energies (80 keV)

unambiguously measure the IC emission (or provide tight upper limits).

particularly powerful for study of radio relics IC emission

Monique ARNAUD

Statistical studies (I): correlations with global properties

Open questions:

- Do all clusters with a recent merger have halos/relic?
- Do ALL clusters have a radio halo ?
- What is the most relevant X-ray quantity and what is the slope/dispersion/evolution of the correlations ⇒ quantitative test of models

We need:

- X-ray data: exist (XMM/chandra follow-up of ROSAT samples; XMM serendipitous surveys)
- Much higher sensitivity radio survey/ follow-up: LOFAR

Statistical studies (II): correlations with dynamical state

Correlation with departure from relaxation

High z clusters are dynamically younger (as expected in hierarchical scenario)

The frequency/properties of radio halos is expected to evolve with z ... a test of structure formation and merger physics

also combination with SZ (Planck) data

CONCLUSION

- Detailed combined X-ray/radio spectro imagery
 - \Rightarrow Physics of hierarchical cluster formation

(shocks, turbulence, particles acceleration, B amplification etc...)

- \Rightarrow LOFAR (adapted to cluster steep spectrum)
 - + XMM/Chandra
 - + SIMBOL-X hard X-ray particularly interesting!

well matched spatial resolution

- Discovery of new relics/halos and statistical properties (correlation with X-ray/SZ) and evolution with z
 - \Rightarrow again constraints on model PLUS tracer of cluster formation

LOFAR: key 'survey' capability ! + XMM (unbiased samples, XCS, follow-up) + Planck