Polarization of Cluster Radio Sources with LOFAR

Federica Govoni Matteo Murgia

(INAF – Osservatorio Astronomico di Cagliari, Italy)

COLLABORATORS:

Luigina Feretti

(INAF – Istituto di Radioastronomia, Italy)

Gabriele Giovannini

(Dip. Astronomia, Univ. Bologna, Italy)

Emmen (NL) 23 - 27 April 2007

Outline of the Talk

Three-dimensional cluster magnetic field models

FARADAY program Murgia et al. (2004)

Abell 2255 Govoni et al. (2005, 2006)

Radio Halo intensity and polarization

Rotation Measure

Radio Halos expectations with LOFAR RM expectations of radio galaxies with LOFAR

3-Dimensional multi-scale cluster magnetic field models

RADIO HALO EMISSION ROTATION MEASURE OF RADIO GALAXIES

3-Dimensional multi-scale cluster magnetic field models

RADIO HALO EMISSION

 $\mathbf{N}(\epsilon) = \mathbf{N}_0 \epsilon^{-\delta}$

$$\begin{split} \mathbf{I}_{\nu} \propto \int \mathbf{N}_{0} \mathbf{B}_{\perp}^{1+\alpha} \nu^{-\alpha} \mathbf{f}(\epsilon_{\min}, \epsilon_{\max}, \alpha) \mathbf{d}\mathbf{l} \\ \delta = 2\alpha + 1 \end{split}$$

$$B_0 = 1\mu G \qquad n = 3$$

3-Dimensional multi-scale cluster magnetic field models

ABELL 2255

VLA 5 - 8 GHz, Beam 2" Govoni et al. 2006

-200

-100

BAD/M/M

n

100

 $\Psi_{\rm OBS} = \Psi_{\rm INT} + \Delta \Psi = \Psi_{\rm INT} + \lambda^2 \times {\rm RM}$ $\mathbf{RM} \propto \int_{0}^{\mathbf{L}} \mathbf{n_e} \mathbf{B}_{\parallel} \mathbf{dl}$

VLA 1.4 GHz, Beam 25"

Govoni et al. 2005 See also Pizzo R. talk

ABELL 2255

40+24

3e+24

W/Hz/Mpc^2

5e+24

2e+24

20+24 4e+24 W/Hz/Mpc^2 8e+24 1e+24 6e+24 500 500 ğ D--500 -500 n=2-4 -500 0 kpc 500 0.1 0.15 FPOL 0.05 0.2 0.25 03 500 500 ğ o--500 -500

-500 0 500 kpc

0 kpc

500

RADIO HALO EMISSION

-Power spectrum spectral index:
n=2 at the cluster center
n=4 at the cluster periphery
-Magnetic field strength at the center
2.5μG

Govoni et al. 2006

-500

ABELL 2255

ROTATION MEASURE IMAGES

Govoni et al. 2006

SIMULATIONS

Frequency=15 MHz Beam=50["]

Sensitivity=11 mJy/beam

Frequency=30 MHz

Beam=25"

Sensitivity=2 mJy/beam

Frequency=60 MHz

Beam=13"

Sensitivity=1.65 mJy/beam

Frequency=75 MHz

Beam=10"

Sensitivity=1.30 mJy/beam

Frequency=120 MHz

Beam=6"

Sensitivity=0.070 mJy/beam

Frequency=150 MHz

Beam=5"

Sensitivity=0.065 mJy/beam

Frequency=200 MHz

Beam=3.8"

Sensitivity=0.063 mJy/beam

Frequency=240 MHz

Beam=3.1"

Sensitivity=0.076 mJy/beam

Frequency=15 MHz Beam=50"

Sensitivity=11 mJy/beam

Frequency=30 MHz

Beam=25"

Sensitivity=2 mJy/beam

Frequency=60 MHz

Beam=13"

Sensitivity=1.65 mJy/beam

Frequency=75 MHz

Beam=10"

Sensitivity=1.30 mJy/beam

Frequency=120 MHz

Beam=6"

Sensitivity=0.070 mJy/beam

Frequency=150 MHz

Beam=5"

Sensitivity=0.065 mJy/beam

Frequency=200 MHz

Beam=3.8"

Sensitivity=0.063 mJy/beam

Frequency=240 MHz

Beam=3.1"

Sensitivity=0.076 mJy/beam

POLARIZATION OF RADIO HALOS

POLARIZATION OF RADIO HALOS

ROTATION MEASURE OF RADIO GALAXIES

RIGHT ASCENSION (J2000)

DECLINATION (J2000)

Radio Halos expectations with LOFAR:

- LOFAR will be an extraordinary instrument to study the morphology of bright radio halos at very low frequencies;
- Thanks to its arcsecond-resolution there could be a chance to detect polarized emission at levels of few % at least at 240 MHz.

RM expectations of radio galaxies with LOFAR:

 LOFAR will produce detailed RM images for hundred of radio sources into (or in background to) a cluster of galaxies. This will permit to determine the power spectrum of the magnetic field fluctuations for a large number of clusters of galaxies.

Murgia et al. 2004

