Magnetic fields in young stars and accretion disks: the X-ray (and radio) view

Thierry Montmerle

Laboratoire d'Astrophysique de Grenoble, France

1. Low-mass and high-mass young stars: a brief review

- ~ 90% of stars (of all masses), and 100% of massive stars (~ 10-100 M_{\odot}) in the Galaxy form in *clusters* of > 100 stars (and "OB associations", up to x 10⁴ members...)
- Low-mass (~ solar) stars are much like... AGNs in their early stages ("Young Stellar Objects": accretion disks and jets !)
 - They are mostly, or entirely, externally *convective*, like the Sun
 - Convective movements create surface magnetic fields via the dynamo effect
- A fraction of high-mass stars are "magnetic", and are much like... *pulsars* (albeit slow !) (extended magnetospheres)
 - Massive stars (earlier than B3) have a convective core surrounded by an extended *radiative envelope*; their strong UV radiation generates powerful *winds*
 - The boundary are A stars: fully radiative, no winds

Low-mass stars: Ubiquity -and diversity- of jets and circumstellar disks The "accretion-ejection" phenomenon and the role of the (molecular) environment

LOFAR'07 (23-26/4/07) 4

A brief history of early low-mass star evolution

Circumstellar matter Classical Weak-lined Main Infalling Evolved PROPERTIES T Tauri T Tauri Sequence Protostar Protostar Star Star Star 5 1 SKETCH ÓD 0 • () o 1 AGE 10⁴ 10⁵ $10^{6} - 10^{7}$ 10⁶ - 10⁷ > 10⁷ (YEARS) mm/INFRARED Class 0 Class I Class II (Class III) Class III CLASS Possible Thin or Planetary DISK Yes Thick Thick Non-existent System X-RAY ? Yes Weak Strong Strong Reconnectio + Irradiation THERMAL Yes Yes No Yes No RADIO effects NON-THERMAL No Yes No ? Yes Yes RADIO

Figure 1 The stages of low-mass young stellar evolution. This review chiefly addresses the bottom three rows of the chart. (Adapted from Carkner 1998.)

2.1 Direct and indirect evidence for magnetic fields: low-mass stars

- X-ray emission
 - Hundreds known !
 - Solar-type activity, enhanced (Sun x 10³⁻⁴)
 - Frequent luminous flares (≈ 1/day vs 1/yr)
 - "coronal" plasma temperatures ($T_X \sim 1-10 \text{ MK}$)
 - "coronal" densities ($n_e \sim 10^{10-12} \text{ cm}^{-3}$)
- "Solar paradigm": plasma confinement by magnetic loops
 - $L \sim 0.1 R_* (\sim 0.3 R_{\Theta}) \rightarrow \sim 3 R_* (\sim 10 R_{\Theta}): large !$
 - $B_{eq} \sim 0.1 1 \text{ kG:} \sim \text{solar active regions}$
 - B confirmed by Zeeman measurements (optical-NIR lines)
 - Not necessarily at low latitudes (Doppler imaging)
- Case study: "COUP" (*Chandra Orion Ultradeep Project:* PI E.D. Feigelson)
 - = 2 week-exp. of the Orion Nebula Cluster
 - > 1600 sources

Example: A "monster flare" in a COUP "classical" T Tauri star

T_{X,max} ~ 100 MK, L >> R_{*}

(Favata et al. 2005)

COUP: global X-ray properties of the ONC young stars

(Preibisch et al. 2005)

Low-mass stars are fully convective: ω^2 dynamo ?

Steady star-disk interaction: "Magnetospheric accretion":

(Bouvier, Grosso, Montmerle et al., in prep.)

The magnetic structure of a "classical" (= accreting) T Tauri star

A complex accretion-ejection configuration...

LOFAR'07 (23-26/4/07) 16

2.2 Direct and indirect evidence for magnetic fields: massive stars

- X-ray emission
 - Usual mechanism: shocks in winds (radiative instabilities)
 - Exotic mechanism if stars are magnetized
 - When $B^2/8\pi > \rho v_w^2$: (dipolar) magnetic field lines are able to confine the wind flow
 - => "Magnetically Channeled Wind Shock Model" (Babel & Montmerle 1997)
 - Opposite shocks from both hemi-magnetospheres
 - COUP evidence(OB stars): rotational modulation (= absorption by cooling disk)
- Radio emission of "magnetic stars" ("CP" = chemically peculiar)
 - Rotational modulation as well (opacity effect)

O-early B stars in Orion: Week-long periodic X-ray rotational modulation

Phase

COUP: Stelzer, Flaccomio, Montmerle et al. 2005

The Magnetically Channeled Wind Shock (MCWS) model

Montmerle 2001, Science (after Babel & Montmerle 1997, AR'07 (23-26/4/07) 20

Periodic radio emission from a Bp star: A rotating, large, wind-confining magnetosphere

HD 37017 ($i=25^{\circ}, \beta=65^{\circ}$)

 ν =5 GHz

3. Summary and conclusions

- *Magnetic fields play a central role* in low-mass young stars, as well as in a fraction of massive stars
- *They are the "central engine"* for the accretion-ejection phenomenon
- *Flaring activity* (i.e., magnetic reconnections) is widespread
- Magnetic structures are often *very large* (up to 10 R_{*} ~ 0.01 AU)
- They can connect the star and the disk, or two stars, even in wide binaries
 - *Periodic variability* is often a signature of large magnetospheres
- LOFAR is able to open a new window on magnetically related processes in young stars, either in *clusters* (statistical approach) or individually (spatially resolved structures: jets)...

Example: An E-LOFAR survey of the ONC ?

- mechanisms for LF radio emission
 - evaporating disks
 - jets (hear J. Eislöffel's talk !)
- time variability (min -> weeks):
 - flares, rotational modulation
 - star-disk interactions ?

