Ukrainian contribution to LOFAR

Alexander Konovalenko

Institute of Radio Astronomy, Kharkov, Ukraine

Astrophysics in the LOFAR era

April 25, 2007, Emmen, NL

The low-frequency radio telescopes in Europe

The UTR-2 radio telescope, N-S arm (1.8 km×60m)

f = 8...32 MHz, $A_{eff max} = 150\ 000$ sq.m

The UTR-2 radio telescope, E-W arm (900m×60m)

March 23, 2007

URAN-1...URAN-4 radio telescopes

Table 1: Main parameters of existing decameter wavelengths radio telescopes							
Radio	Locations	Frequency	Maximum	Number of	Distance to	Angular	
telescopes		range,	effective	elements,	UTR-2	$\operatorname{resolution}$	
		MHz	area, m^2	polarization	(LOFAR), km	at 25 MHz	
UTR-2	Kharkov,	8 - 32	150000	2040	0	$25' \times 25'$	
	Ukraine			1 linear	(~ 2000)		
URAN-1	Zmiev,	8 - 32	5500	96	42	60"	
	Ukraine			2 linear	(~ 1900)		
URAN-2	Poltava,	8 - 32	28000	512	120	21"	
	Ukraine			2 linear	(~ 1800)		
URAN-3	Lviv,	8 - 32	14000	256	915	2.7"	
	Ukraine			2 linear	(~ 1000)		
URAN-4	Odessa,	8 - 32	7300	128	613	4.0"	
	Ukraine			2 linear	(~ 1500)		
NDA	Nancay,	8 - 88	2×4000	2×72	3000	~ 1.0 "	
	France			2 circular	(~ 500)	(potentially)	
SURA	N.Novgorod,	4 - 9	40000	144	1500	Trans. power	
	Russia			2 linear		$\sim 150~{\rm MWt}$	

Nr.	Parameter	UTR-2, URAN, NDA	LOFAR	LWA
1	Frequency range, MHz	832 (NDA-888)	10240	2080
2	Number of stations	6	100	50
3	Total number of elements	~ 3000	~ 13000	~ 12500
4	Total number of antenna ele-	~ 4000	~ 26000	~ 25000
	ments for one polarization			
5	Number of elements per station	$96 \dots 1440$	128	250
6	Station size, m	$28\times 240\ldots 60\times 1900$	$\sim 100 imes 100$	$\sim 100 \text{ diameter}$
7	Maximum baseline, km	950	~ 350	~ 400
8	Minimum baseline, km	~ 0.1	~ 0.1	~ 0.1
9	Maximum angular resolution	~ 3 "	~ 6 "	~ 6 "
	(25 MHz)			
10	Field of view, degree	220	all-sky	312
11	Electronic steering, degree	± 80	multi-beaming	multi-beaming
12	Polarization	2 (5 stations)	2	2
13	Maximum observable band-	$10 \dots 20$	32	3
	width, MHz			
14	Spectral resolution, kHz	0.112	< 1	< 1
15	Time resolution, ms	1100	1	10
16	Summarized total effective area	~ 200000	350000	900 000
	(25 MHz), m ²			
17	Virtual core (VC) size, km	$2 \times 1 (\text{UTR-}2)$	2×2	5×5
18	VC max. eff. area (25 MHz), m ²	150000 (UTR-2)	100000	300 000
19	VC stations number	12 (UTR-2)	~ 25	~ 17
20	VC elements number per station	150 and 180 (UTR-2)	128	250
21	Limit of the confusion effect sen-	< 1000 mJy	< 1 mJy	< 1 mJy
	sitivity for the continuum point			
	radio source (25 MHz)	10 I		
22	Sensitivity of radio emission	$\sim 10 \text{ mJy}$	$\sim 1.5 \text{ mJy}$	$\sim 1.5 \text{ mJy}$
	without the confusion effect			
	$(25 \text{ MHz}, \tau = 1 \text{ h}, B = 4 \text{ MHz})$			

Table 2: Comparison of existing and future low-frequency instruments principal parameters

The diagramme bellow illustrates the set of objects and tasks which are investigated with the UTR-2, URAN-1...URAN-4. It can been seen that this set is in good accordance with the future scientific program of LOFAR [5-7].

Continuum stationary radio emission

UTR-2 COMA 14.7 MHz

DEC (2000)

Here we present some illustrations of the UTR-2 and URAN results for the astrophysical objects with the fine structure of spectral, temporal and spatial radio emissions. These results demonstrate the high astrophysical significance of the low-frequency radio astronomy and good perspectives for the investigations with the future new generation giant radio telescopes.

UTR-2 radiomap of Coma cluster (Krymkin, Sidorchuk). The sensitivity for this kind radio emission is limited by the confusion effect (for UTR-2 it is near 1 Jy)

Fine spectral structure radio emission

Carbon RRL's towards Cas A, UTR-2, 26 MHz

Detection of carbon **RRL's with recordly** principal high number quantum **n~1000** (Stepkin, Konovalenko, Udaya Kantharia, Shankar). There is no restriction by the confusion effect (reached sensitivity after time and lines averaging is at the level of few mJy).

D ≈ 0.1mm !

Fine time structure radio emission

Detection of SED by the groundbased instrument (UTR-2, 20-25 MHz) (Konovalenko, Lecacheux, Rucker, Fischer, Abranin, Kalinichenko, Sidorchuk, Falkovich, 2006)

Fine spatial structure radio emission

52°2619-

Structure of 3C234

Structure of 3C295

Radio interferometry observations by UTR-2 – URAN VLBI system (Braude, Megn, Rashkovsky, Shepelev, et al.) in comparing with high frequency imaging of radio sources.

Complex fine time-spectral structure radio emission

Solar sporadic radio emission with the fine timefrequency structure detected by UTR-2 (Melnik, Konovalenko, Rucker, Lecacheux, Abranin, Stanislavsky, Dorovsky).

B = 33 MHz f = 8...32 MHz N = 16 000 $\Delta f = 2 \text{ kHz}$ $\Delta t = 1 \text{ ms}$ ADC 16 bit

Search of exoplanets radioemission with UTR-2 and new digital receiver (France – Ukraine – Japan), December, 2006 – March, 2007

B = 12 MHz f = 18...30 MHz N = 1024 $\Delta f = 12 \text{ kHz}$ $\Delta t = 1 \text{ ms}$ ADC 12 bit

Search of flare stars radio emission with UTR-2 and DSP, February 2-12, 2007

Preliminary results of AD Leo radio emission search with UTR-2 and DSP, February 7, 2007, f = 18...32 MHz

Ukrainian plan for the perspective development of lowfrequency radio astronomy (Order of Presidium of National Academy of Sciences of Ukraine N 357 from 01.04.2006 with the corresponding financial support).

Test array on UTR-2 observatory, 2000 year [8]

Cas A observations

f = 10...70 MHz

f = 10...70 MHz

New 25-elements test array, 2007 year

Possible distribution of new active antenna elements array (f = 10...70 MHz) on UTR-2 observatory $(S = 1500\ 000 \text{ sq.m})$

2 km

CONCLUSION.

The existing world largest decameter wavelength instruments are the good precursors for the investigations with the future new generation low-frequency radio telescopes from astrophysucal, methodical and technical point of view. The high astrophysical importance of low-frequency radio astronomy is evident. The creation of new giant meter-decameter wavelength radio telescopes is very actual and in time. They will give a huge amount of new astrphysical results.