Simulating the redshifted 21cm Signal from Reionization

Garrelt Mellema Stockholm Observatory

Collaborators: Ilian Iliev, Paul Shapiro, Marcelo Alvarez, Ue-Li Pen, Hugh Merz, LOFAR EoR Key Project team (Ger de Bruyn, Saleem Zaroubi, Leon Koopmans, et al.)

Contents

The simulations
The geometry of reionization
The redshifted 21cm signal

- Iliev, GM, Pen, Shapiro, Alvarez, 2006, MNRAS 369, 1625
- GM, Iliev, Pen, Shapiro, 2006, MNRAS 372, 679
- Iliev, GM, Shapiro, Pen, 2007, MNRAS 376, 534
- Iliev, Pen, Bond, GM, Shapiro, 2007, astro-ph/0609592
- Iliev, GM, Pen, Bond, Shapiro, 2007, astro-ph/0702099

The simulations

- Simulation geometry results
- Redshifted 21cm results

Simulations: Requirements

Large scale simulations.

- Observationally needed (LOFAR observations will have ~several degree fields of view).
- Theoretically needed (cosmic variance, size of HII regions >>10 Mpc). See poster.
- Large dynamic range simulations.
 - Dominant structures in early universe were small collapsed halos ´ (dwarf proto-galaxies).
 - Preferably resolve collapsed structures of $10^8 M_{\odot}$ and up.

Simulations: How?

Two separate steps:

- PMFAST (Merz, Pen, Trac 2005) simulations (3248³ mesh, with 1624³ (4.3 billion) particles):
 - Evolving density field (snapshots)

ACDM (WMAP)

- Collapsed halo list I sources
- Smallest scale structures: clumping factor C(z) (<n²>/<n>²)
- C²-Ray (GM et al. 2006) postprocessing (203³, 406³ meshes):
 Ionized hydrogen fraction
- Note: no hydrodynamics, and photo-ionization as postprocessing (no feedback): justified by the large scale.

PMFAST Structure Formation

- Example of density field (WMAP3).
- L=100/h Mpc
- 4.3 billion particles.
- M_{min} =2.2 ×10⁹ M_{\odot}
- First collapsed halos at z≈16.
- 600,000 sources at z=6.

PMFAST Structure Formation

- Example of density field (WMAP3).
- L=100/h Mpc
- 4.3 billion particles.
- M_{min} =2.2 ×10⁹ M_{\odot}
- First collapsed halos at z≈16.
- 600,000 sources at z=6.

Sources of Reionization

- There are several candidates for the cause of reionization
 - Stars: metal abundance and 'old' stellar populations in galaxies at redshift ~6 suggest early star formation.
 - Quasars: too few?
 - Mini-quasars: no direct evidence?
 - Particle decay: speculative
- Conservative approach: Stars in atomically cooling halos (M>10⁸ M_o).

Halos as Sources

Conservative approach: Stars in atomically cooling halos (M>10⁸ M_☉).

Assumptions:

- M/L=const.
- fixed ionizing photons/atom escaping: $f = f_{SF} \times f_{esc} \times N_{photon}$ per epoch (2x10⁶ year) (Iliev, Scannapieco & Shapiro 2005).
- Spectrum: 50,000 K Black body.

■ f=250:

• $f_{SF} = 16\%$, $f_{esc} = 16\%$, $N_{photon} = 10,000$ (Top-heavy/PopII)

• $f_{SF} = 20\%$, $f_{esc} = 25\%$, $N_{photon} = 5,000$ (Salpeter/PopII)

The simulations
The geometry of reionization
The redshifted 21cm signal

Global Parameters

Sim	f	clumping	Z(50%)	Z(99%)	$ au_{es}$
f250	250	1	8.9	7.5	0.086
f250C	250	C(z)	8.4	6.5	0.08

(WMAP 3: τ_{es} = 0.09 ± 0.03)

Volume: 100/h Mpc M_{min} =2.2×10⁹ M_{\odot}

A normal stellar population (with efficient SFR & UV escape efficiency) can reionize the universe before z=6, and produce a τ consistent with WMAP3.

Results: Evolution

- Animation of the evolution of (a slice of) the density field and HII regions
- Green: neutral
- Orange: ionized
- Black dots: sources
- Note: clustering & overlap.
- Inside-out reionization.
- Simulation with f=2000 in 406³ (evolution from z=14 to 8).

Geometry: Power Spectra

3D powerspectra:

- Poisson noise at largest scales
- Clear peak at some (time-dependent) characteristic scale.
- Strongest peak at 50% ionization: average distance between larger clusters.

Full density——Neutral density•••••••

The simulations
The geometry of reionization
The redshifted 21cm signal

Observing Reionization

<u>Directly</u>: Hydrogen (lines \rightarrow redshift information)

- Emission:
 - $21cm (if T_{spin} > T_{CMB})$
- Absorption:
 - **21cm**: Against radio galaxies / Cosmic Microwave Background: (if $T_{spin} < T_{CMB}$)
 - Lya: Against QSOs, starbursts, or gammaray bursts

Indirectly: Effects on the CMB

(integrated along the line of sight).

- CMB Polarization:
 - τ_{es} between us and the CMB + small scale variations.
 - B-mode polarization.
- Kinetic Sunyaev-Zel'dovich effect (inverse Thomson scattering against moving electrons).

Constructing the 21cm Signal

- The differential brightness temperature of the 21cm signal can be written as
 δT(z) ≈ 28mK x_{HI} (1 + δ) (1-T_{CMB}/T_s)
 [(1+z)/10]^{1/2} (for WMAP3 cosmological parameters).
- For T_{spin} >> T_{CMB}, it depends *only* on overdensity (δ) and neutral fraction (x_{HI}), and can be easily constructed from simulation results.

Here we assume that the neutral IGM has T_{spin}>>T_{CMB}

- IGM heated by X-rays and/or shocks.

ľ

April 26, 2007 spin coupled to T_{kin} by Lya scattering (Ciardi & Madau 2004).

The Image Cube

Frequency

 Observations of fields Δθ by Δθ over Δν: image cube.

Time.

Flying through the Image Cube

- As we fly through frequency/redshift space, structure formation raises the intensity level, and the contrast.
- Reionization removes
 21cm: dark spots.
- Movie generated by using the periodicity of the volume, but rotating it to avoid passing through the same structures.

Simulation f250C

Different Beam shapes

f2000 (WMAP1)

δT (mK) at z=13.62 (Beam=3.0 arcmin, Bandwidth=0.2 MHz)

Gaussian Beam

Compensated Gaussian Beam

April 26, 2007

LOFAR Era

Image Cube: Redshift Slice

LOS Reionization Histories

- Reionization histories along the line of sight.
- Frequency direction contains evolutionary, geometrical and velocity information.

3' interferometer beam and 200kHz bandwidth (LOFAR core-like)

Includes redshift distortions due to peculiar velocities

April 26, 2007

LOFAR Era

Statistical Measurements

- LOFAR EoR experiment sensitivity will (initially) be too low (< 20 mK) to image 21cm emission pixel by pixel: Statistical measurements needed.
 - 1. measure noise level as function of redshift.
 - 2. measure 21cm power spectrum on the sky as function of redshift (given directly by interferometer 'visibilities': Fourier transform of the sky).

RMS noise level at redshifted 21cm

Z(50%)

Conclusions

- Large scale, large dynamic range simulations needed for reionization.
- Normal stellar population can explain reionization.
- Reionization produces a clear signature in the rms noise level and in the power spectra of redshifted 21cm, which is measurable by LOFAR.
- Start, end and duration of reionization will give exciting clues about earliest galaxy/star formation.

Caveats

- LOFAR will have to deal with serious foreground emission, 10⁵ times above the EoR signal (galactic & extragalactic).
- Our star formation recipe gives a few times higher values than estimates from z~6.
- Finite resolution affects the geometry of reionization (but not by much, cf. Ritzerveld 2007).

Sunyaev Zel'dovich Effects

- Photons travelling from the CMB to us are scattered by free electrons, this can change their energies.
- There are *two* effects:
 - <u>Thermal SZ</u>: in hot cluster gas (10⁸ K) the photons inverse Compton scatter and the average photon energy increases.
 - Kinetic SZ: in any ionized region the photons scatter against moving electrons and lose or gain energy depending on the motion of the electrons.

Kinetic SZ Effect

- To first order the kinetic scatterings cancel out.
- Electron density fluctuations needed:
 - Linear density fluctuations in IGM (Ostriker-Vishniac or OV effect).
 - Non-linear density fluctuations in clusters (kSZ in narrow sense)
 - Patchy reionization

Relevance and Previous Work

- The kSZ effect is one of the targets for upcoming CMB experiments: Atacama Cosmology Telescope (ACT), South Pole Telescope (SPT).
- Analytical estimates (Gruzinov & Hu 1998, Santos et al. 2003, McQuinn et al. 2005, Zahn et al. 2005): disagreement on strength and scales.
- Numerical estimates (Gnedin & Jaffe 2001, Salvaterra et al. 2005): considered small volumes.

Sample kSZ map from patchy reionization

- Sample kSZ map (100/h Mpc, f=250).
- Temperature variations given by LOS integral:

$$\frac{\Delta T}{T}(\hat{\mathbf{n}})_{kSZ} = \sigma_T \int \mathrm{d}\eta \mathrm{e}^{-\tau(\eta)} a n_{\mathrm{e}} \hat{\mathbf{n}} \cdot \mathbf{v},$$

Fluctuations range $\Delta T/T = -10^{-5}$ to 10^{-5} , i.e. ΔT max/min are in the tens of μ K at ~arcmin scales.

~1°

kSZ Power Spectra

- Power spectra from patchy reionization peak at *l*~3000-5000, with a peak value ~1 µK.
- Below *l*~10⁴ patchy reionization dominates over OV-effect.
- Above *l*~3000 never stronger than post-reionization nonlinear kSZ (Zhang et al.).

Importance of Patchiness

- We compare to instant and uniform reionization histories with the same τ_{es}.
- Instant:
 - order of magnitude less power for l~2000-10⁴, but same large-l behaviour.
- Uniform:
 - much less power on all scales.
- Note: results without the correction for the missing velocity modes.

Previous Simulations

- Previous numerical simulations on smaller volumes:
 - 4/h Mpc (Gnedin & Jaffe 2001)
 - 20/h Mpc (Salvaterra et al. 2005)
- Much lower amplitudes: missing large scale power in velocity field.

uncorrected

 10^{6}

 10^{-15} 103

 10^{4}

Analytical Estimates

al. 2005 McOui

Analytical Estimates

- None of the existing analytical & numerical estimates matches our results (nor each other!!):
 - different amplitudes
 - shapes of the power spectrum (sharper or shallower)
 - l-value of peak

kSZ observations should give interesting clues about reionization!

35/h Mpc Simulations

Sim	f _{low}	f _{high}	clumping	Z(50%)	Z(99%)	$ au_{es}$
f2000_250	2000	250	1	16.2	13.5	0.197
f2000_250S*	2000	250	1	14.5	10.4	0.167
f2000C_250S	2000	250	C(z)	13.8	9.1	0.151
f250_250S	250	250	1	12.6	9.9	0.138
f250C_250S	250	250	C(z)	11.6	8.4	0.122

*also done at 406³

1st year WMAP cosmological parameters

Low mass halos: $10^8 < M < 10^9 M_{\odot}$, 'S': suppressed in ionized regions. High mass halos: $M > 10^9 M_{\odot}$

April 26, 2007

LOFAR Era

Statistics

The 21cm signal is strongly non-gaussian.

LOFAR EoR Experiment

- The plan is to observe three different fields of 2° by 2° for 100 nights with the 'virtual core', starting in 2008.
- After initial calibration at 1 s and 1 kHz resolution, the observations will be saved at 10 s and 10 kHz resolution for further processing. Total storage ~1PB.
- The final sensitivity should be of order 20-30 mK per beam.
- Resolution will be $\sim 3'$, or $\ell \sim 7000$.

21cm Challenge: Foregrounds

Continuum Foregrounds:

- Galactic Synchrotron (~100K)
- Radio Galaxies (~10K)
- Radio Halos & Relics (~10K)
- Galactic & Extragalactic free-free emission (~1K)
- Smooth continuum should allow subtraction. Complications: foreground polarization, angular variations.
- Radio recombination lines.
- Ongoing observation campaign with WSRT/LFFE to characterize the foregrounds.

Implications for LOFAR

- LOFAR noise level will not allow imaging of redshifted 21cm.
- Analysis will be done on statistical data such as fluctuations as a function of frequency, and 2D (3D) power spectra.
- Perhaps some extreme peaks/valleys can be picked up, but only at the 2σ level.
- Maximum resolution (*l*~7000) does capture the peak of the power spectrum; its location is slightly dependent on source efficiency.

Image Slice

f2000

Image Slice

f2000