LOFAR and the Epoch of Reionization

Saleem Zaroubi Kapteyn Astronomical Institute University of Groningen

Overview

Introduction

The Astrophysics (Andrea's Talk)

- Reionization:
 - What do we know?
 - What do not we know?

• The Physics

- the 21 cm emission.
- The spin and brightness temperature.
- The LOFAR-EoR project
 - The measurement
 - The simulations
 - Signal & Systematics.
 - The data products.
- Summary

Introduction

Credit for picture: WMAP MARATER

What do we know?

- The Lyman-alpha forest: At z<6 he Universe is completely ionized
- The Universe has completed its ionization by redshift 6: SSDS quasars
- The WMAP polarisation measurement suggest that ionization has happened at about z~10.

What don't we know?

- When did the reionization happen?
- What are the sources of ionizing radiation? Stars, miniqsos, decaying DM, exotic physics,...
- How fast did it spread and in what fashion?
- How did the reionization influence the subsequent galaxy and structure formation in the Universe?

The physics of the 21 cm transition

n₀, g₀

- The 21 cm hyperfine transition is a forbidden transition between the two 1²S_{1/2} ground level states of hydrogen.
- The relative population of the two states is given by the spin temp. T_s, i.e.,

 $n_1/n_0 = g_1/g_0 \exp(-T_*/T_s)$ with T_*=0.068 k

• The value of the spin temp. is given by the following equation:

 $T_{s}=(T_{CMB}+\gamma_{c}T_{K}+\gamma_{\alpha}T_{K})/(1+\gamma_{c}+\gamma_{\alpha})$

Field 1958

Lyman-alpha Coupling

The Wouthuysen-Field effect, also known as Lymanalpha pumping.

Dominant in both in the case of stars and Blackholes, due to photo and collisional excitations, respectively.

Collisional Coupling

- H-H collisions that excite the 21 cm transition. This interaction proceeds through electron exchange.
- H-e collisions. Especially important around primordial X-ray sources (mini-quasars).
 - This effect might also excite Lyman-alpha transition which adds to the T_s- T_{СМВ} decoupling efficiency.

Chuzhoy et al. 06 Zaroubi et al. 06

The Global evolution of the Spin Temperature

At z~10 T. is tightly coupled to T_{CMB} . In order to observe the 21 cm radiation decoupling must occur.

Loeb & Zaldarriaga 04

The brightness temperature: The measured quantity

 The quantity that is measured with radio telescopes along a given line of sight and is given by:

$$\delta T_b(l, b, v) \approx 28 \text{mK} (1 + \delta) x_{HI} \frac{T_s - T_{CMB}}{T_s} \frac{\Omega_b h^2}{0.02} \left[\frac{0.24}{\Omega_m} \left(\frac{1 + z}{10} \right) \right]^{1/2}$$

Field 1958

• The sources that ionize are probably the same as the ones that decouple

Possible ionization sources The first stars

Form favourably very massive stars very early on.

- First stars are different creatures from the ones we see in the local universe (no metals).
- Atomic cooling is efficient in halos with T_{vir}>10⁴k (~10⁹M_{sun}). At smaller masses H₂ cooling probably produces very massive stars.
- Efficiency of producing stars!! In our environment the main question is why star formation is so inefficient.

Abel, Bryan, Norman 00., Bromm Larson 00

Simulations

Ciardi & Ferrara.

Gnedin

Mellema et al.

Khan et al.

and many others

• Most simulations assume stellar ionization sources.

Possible decoupling sources The first massive black holes

Quasars with Black-hole masses of $\sim 10^9 M_{sun}$ are seen at $z \sim 6.7$

~3 Mpc comoving

BHs with intermediate masses (10³⁻⁶M_{sun}) could ionize the Universe and heat it up.

Decoupling through Miniquasars X-ray radiation

- The X-ray radiation from miniqsos results in T_s - T_{CMB} decoupling through collision heating and excitation.
- Since the mean free path of X-ray photons is quite large, the spin temperature will have different properties relative to that around stars.

Kuhlen, Madau & Montgomery 06 Zaroubi, Thomas, Sugiyama Silk. 2006

The Brightness temp. Around a single miniqso

LOFAR - The Instrument & Relevant Requirements for the EoR KSP -1-

o Frequency 115 - 205 MHz range: (30MHz settings of 195 subbands)

o Spectral 1 KHz within sub-band (RFI excision) resolution: 10 KHz for storage (dt=10 sec) 100 KHz for analysis

o HBA station: 96 tiles (4x4 dua pol. dipoles) 40-50 m diameter station

o Sensitivity: rms=300 mK after 3 hrs (core; $\Delta \Theta \sim 3-5'$) ($\Delta v=1MHz$) rms= 30 mK after 300 hrs.

The EoR key project: Scientific goals

- The plan is to statistically measure the EoR signal and as the data collection proceeds to refine our measurement and produce a full power spectrum and eventually maps.
- High order statistics
- The environment of very high z quasars.
- Cross correlate with other data sets:
 - CMB (Planck data).
 - Lyman-alpha emitters .
 - Other complementary data.
- The 21 cm forest (if a strong enough background source is found).

The Ionosphere and the calibration problem

Wedge Effects: Faraday rotation, refraction, absorption below 5 MHz

Wave and Turbulence Effects: Rapid phase winding, differential refraction, source distortion, scintillations

Dynamic ionospheric phase-screen mapping: --> 2-D phase screen

tile beam 20-25°

tile beam 20-25°

Year 2 - 4

Year 1

The ionosphere

Simulations by O. Smirnov

The UV Coverage

The foregrounds

- galactic synchrotron emission (~70%)
- galactic thermal (free-free) emission (~1%)
- integrated emission from extragalac.
 Sources-(~27%)
 - radio sources/AGNs, clusters

Shaver at al., di Matteo et al., Santos et al.

Simulating the data

The Measurement Equation

$$\vec{V}_{ij}(u,v) = \sum_{k} \int df \int dt \left(J_{ik} \otimes J_{jk}^{*} \right) S \vec{I}_{k}$$

- Hamaker-Bregman-Sault formalism
- Station-pair (i,j): Vector of 4 'correlations'
- Matrix equation: full polarization
- Instrumental Jones matrices J (2x2)
- Stokes matrix S (4x4)
- Sum over sources (k): Flux [I,Q,U,V]
- Integral over time-freq domain

See Panos' Talk For more detail

Measurement

• Sensitivity about <u>0.15 k</u> for 1 hour integration at 120 MHz

$$\Delta T^{N} = \frac{1}{\eta_{e}} \frac{T_{sys}}{\sqrt{\Delta v t_{int}}}$$

B is the brightness vector.

is the noise

A is the response

D

Data Model $\mathbf{R}_{k} = \mathbf{A}_{k} \mathbf{B} \mathbf{A}_{k}^{+} + \sigma^{2} \mathbf{I}$ $\mathbf{A}_{ik} = \mathbf{A}_{k}^{gain} \mathbf{A}_{ik}^{delay} \mathbf{A}_{k}^{offset} \mathbf{A}_{k}^{Faraday} \mathbf{D}_{k}$

Data Simulation Pipeline

RuG

Pre

During

Post

Tomography of the Reionization Process: What will we learn?

The dark ages: Fluctuations PS at z~10.(Non)-Gaussianity, Universe's Geometry (AP test).

- First objects and their properties.
- How fast and in what fashion did reionization spread.

Influence on subsequent galaxy and structure formation in the Universe

