

Astrophysics in the LOFAR era EMMEN, 23 – 27 April 2007

Foregrounds Simulations for LOFAR – EoR Experiment

Collaborators: S. Zaroubi (supervisor), G. Bernardi, G. de Bruyn, G. Harker, L. Koopmans, P. Labropoulos, V. Pandey, R. M. Thomas, S. Yatawatta

Outline

Introduction

Galactic foregrounds

- diffuse synchrotron emission
- supernovae remnants
- free free emission

Extragalactic foregrounds

- radio galaxies
- clusters of galaxies
- Extraction of 21cm EOR signal from FGs
- Plans for the future

Introduction

Kapteyn Astronomical Institute, RUG

SYNCHROTRON EMISSION (~70%)

sources: electrons trapped in the magnetic fields of discrete galactic supernovae remnants and diffuse emission from interaction of cosmicray electrons with galactic magnetic field

 DGSE as a probe of galactic magnetic field and distribution of relativistic electrons in the galaxy

DIFFUSE SYNCHROTRON EMISSION

 spectrum is close to a featureless power law with a gradual variation in spectral index with a position on the sky and frequency

- average spectral index (100 MHz) β =-2.55, with position dispersion $\sigma(\beta)$ ~0.1 (Shaver et al. 1999)

DIFFUSE SYNCHROTRON EMISSION

$$T(x, y, v) = \int T_0(x, y, z) \left(\frac{v}{v_0}\right)^{-\beta(x, y, z)} dz$$

Interpretation (Interpretation) (Inte

⇒ 2 random Gaussian fields with power law spectrum (index = -3)
 ⇒ normalize mean and rms of RGF according to observed maps (Reich & Reich 1988)

⇒ maps of DGSE @ different frequencies

DIFFUSE GALACTIC SYNCHROTRON EMISSION

Kapteyn Astronomical Institute, RUG

SUPERNOVAE REMENANTS

- based on observed statistical properties of SNRs
 - e.g. Caswell & Lerche 1979, Trushkin 1998

A Catalogue of Galactic Supernova Remnants

- D. A. Green, 2006
- low frequency observations with VLA (Brogan et. al., 2006)

surface brightness
 spectral index
 angular size

 ⇒ power law, normalized according observations

• FREE - FREE EMISSION (~1%)

arises from interaction of free electrons with ions and consists of thermal bremsstrahlung radiation

• at intermediate and high galactic latitudes $H\alpha$ is a good tracer of diffuse galactic free-free emission, since both are emitted by the same ionized medium and have intensities proportional to emission measure $(\propto \int N_e^2 dl)$

- spectrum can be approximate as power law with v^{-2.15} that scales as $C_1 \sim l^{-3.0}$ (Tegmark et al. 2000)

 simulated in a same manner as galactic synchrotron emission, but with different spatial and frequency indexes

Extragalactic foreground

RADIO GALAXIES

based on radio sky simulations by Jackson 2005

- **3 TYPES OF SOURCES**: FRI, FRII (Fanaroff & Riley 1972) & star forming (SF) galaxies

predicted source surface density distribution @151 MHz

- predicted number of sources per square degree @151 MHz
- random distribution on the map
- random size distribution between 50 800 kpc for FRs

galaxies and between 10 – 100 kpc for SF galaxies

power law with temp. spectral index -2.7

Extragalactic foreground

- CLUSTERS OF GALAXIES
 - The Hubble Volume Simulation (10x10 degree)
 Cluster Catalogue (Virgo Consortium, 2002)
 - mass DMH X ray luminosity correlation (Jenkins et al., 2001)
 - X ray radio luminosity correlation (Enβlin & Röttgering, 2002)
 ~ 30% with radio properties (from observations)
 - redshift, virial radius ⇒ angular size
 - power law with spectral index distribution from Cohen et al. 2004

Extragalactic foreground

CLUSTERS OF GALAXIES

Extraction of EoR from FGs

Extraction of EoR from FGs

proposed methods:

- for one pixel (frequency domain)
- polynomial fit, PCA, Wiener filter, wavelets

Extraction of EoR from FGs

add polarization charachter of galactic foregrounds
 Galactic synchrotron polarization is linearly polarized

normalize FG maps according LFFE observations

questions?

Kapteyn Astronomical Institute, RUG