

The W-F Mechanism Revisited or The Temperature of Light

Avery Meiksin

Institute for Astronomy University of Edinburgh

Astrophysics in the LOFAR Era Emmen, 26 April 2007

The spin temperature

The ratio of triplet state (upper) to singlet state (lower) is specified by the spin temperature T_s

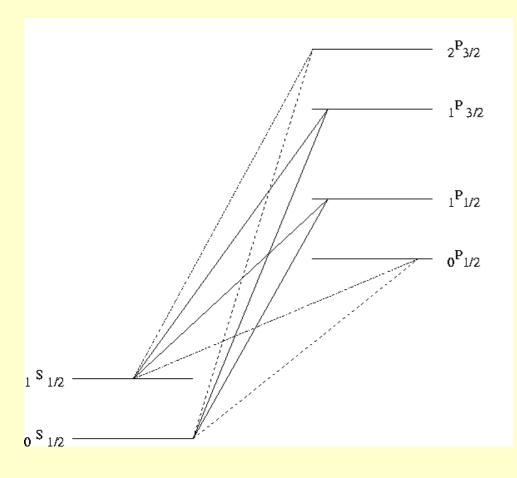
$$\frac{h v \stackrel{\uparrow}{=} k T_{*}}{\prod_{n_{0}}} n_{1} \qquad \qquad \frac{n_{1}}{n_{0}} = 3 \exp[-T_{*}/T_{S}]$$

Coupling to the Cosmic Background Radiation ensures

 $T_{S} = T_{CBR}$.

In this case, there is no net signal: the HI absorbs and re-emits the CBR photons at the same rate and the IGM is *invisible*.

The Wouthuysen-Field mechanism: reset the spin temperature by scattering Lyα photons



$$T_{S} = \frac{T_{\text{CBR}} + y_{\alpha} T_{\alpha}}{1 + y_{\alpha}}$$

$$y_{\alpha} \equiv \frac{P_{10}}{A_{10}} \frac{T_{\ast}}{T_{\alpha}}$$

 T_{α} is the *light temperature* P_{10} is the Ly α scattering rate due to sources

What sets the light temperature?

Field (1958) showed:

$$\frac{P_{01}^{L}}{P_{10}^{L}} = 3 \frac{\langle u_{\nu_{0}} \rangle + \langle u_{\nu_{0}'} \rangle}{\langle u_{\nu_{1}} \rangle + \langle u_{\nu_{1}'} \rangle} = 3 \exp(-T_{*}/T_{\alpha})$$

The averages are carried over the line absorption profile centred on each frequency. Field (1959) showed for pure Doppler scattering and a Doppler source:

 u_v is proportional to exp[-h(v-v_0)/kT] for v near v_0 and T_a = T, the matter temperature,

...but the proof was valid only for $h(v-v_0) \le kT$.

Since the full Doppler core must be included to evaluate the averages $\langle u_v \rangle$, the complete radiative transfer equation must be solved:

$$\frac{Du_{\nu}(\mathbf{r},t)}{Dt} = \frac{\chi_{0}(\mathbf{r},t)c}{h\nu_{0}}h\nu \left[\int_{-\infty}^{\infty} dQ'W(\nu',Q')u_{\nu'}\right]$$
$$-\int_{-\infty}^{\infty} dQW(\nu,Q)u_{\nu} + h\nu S(\nu),$$

W(v,Q) describes the scattering of a photon of frequency $v \rightarrow v' = v - Q$.

Diffusion approximation

Rybicki & Dell'Antonio (1994) and Rybicki (2006) derive the scattering equation in the diffusion approximation:

$$\frac{1}{c\chi}\frac{\partial J}{\partial t} = \frac{\Delta\nu_{\rm D}^2}{2}\frac{\partial}{\partial\nu}\left[D(\nu)\left(\frac{\partial J(\nu)}{\partial\nu} + \frac{hJ}{kT}\right)\right]$$

where J (= n) is the photon number density.

In a steady-state $(\partial J/\partial t = 0)$, $J(v) = J(v_0)exp[-h(v-v_0)/kT]$, as found by Field (1959) near line centre. This is the expectation (for $hv_0 >> kT$) as the radiation approaches statistical equilibrium, and establishes a Bose-Einstein distribution about the line centre:

$$n = \frac{1}{e^{(h\nu - \mu)/kT} - 1}$$

SUPA Fokker-Planck approximation

But the diffusion approximation neglects non-particle conserving terms, and so leaves D(v) ambiguous:

$$\frac{1}{c\chi}\frac{\partial J}{\partial t} = \frac{\Delta\nu_{\rm D}^2}{2}\frac{\partial}{\partial\nu}\left[D(\nu)\left(\frac{\partial J(\nu)}{\partial\nu} + \frac{hJ}{kT}\right)\right] + \text{non-particle} \\ \text{conserving terms}$$

The Fokker-Planck approximation exactly conserves particle number:

$$\frac{Dn_{\nu}(\mathbf{r},t)}{Dt} = \frac{\chi_{0}(\mathbf{r},t)c}{h\nu_{0}}\frac{\partial}{\partial\nu}\left\{\langle Q\rangle\varphi(\nu)u_{\nu}\right. \\ \left. + \frac{1}{2}\frac{\partial}{\partial\nu}\left[\langle Q^{2}\rangle\varphi(\nu)u_{\nu}\right]\right\} + S(\nu)$$

AM (2006)

The Fokker-Planck approximation may be extended by Taylor-expanding beyond second order

$$W(\nu',Q')u_{\nu'} \approx W(\nu,Q')u_{\nu} + Q'\frac{\partial}{\partial\nu}\left[W(\nu,Q')u_{\nu}\right] + \frac{1}{2}Q'^{2}\frac{\partial^{2}}{\partial\nu^{2}}\left[W(\nu,Q')u_{\nu}\right].$$

with generally defined moments of the frequency redistribution function:

$$\langle Q^n \rangle \varphi(\nu) \equiv \left[\int_{-\infty}^{\infty} dQ Q^n W(\nu, Q) \right]$$

Light thermodynamics

But the Fokker-Planck approximation doesn't give $n(v) = n(v_0)exp[-h(v-v_0)/kT]$. How then can it describe the approach to statistical equilibrium and provide the correct light temperature $T_{\alpha} \rightarrow T$?

Use a light temperature defined *thermodynamically*. Equilibrium is reached when heat transfer between the radiation and matter ceases. The rate of heat exchange is:

$$G = P_l n_l \frac{h\nu_0}{m_a c^2} h\nu_0 \left(1 - \frac{T}{\langle T_u \rangle_H}\right)$$

where $\langle T_u \rangle_H$ is the thermodynamic light temperature.

Thermodynamic light temperature

The thermodynamic light temperature is defined through the photon statistical distribution temperature:

$$T_u(\nu) = -\frac{h}{k} \left(\frac{d\log u_\nu}{d\nu}\right)^{-1} \qquad (u = hv^*n)$$

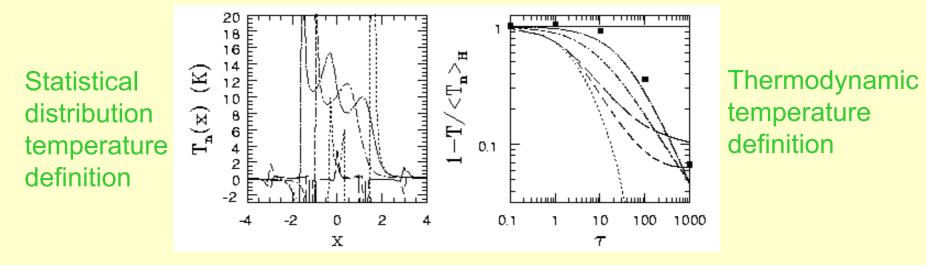
This recovers $T_u(v) = T$ for $n(v) = n(v_0) \exp[-h(v-v_0)/kT]$.

The frequency-averaged thermodynamic temperature is:

$$\langle T_u \rangle_H = \int_0^\infty d\nu u_\nu \varphi_V(\nu) \bigg/ \int_0^\infty d\nu u_\nu \varphi_V(\nu) \frac{1}{T_u(\nu)}$$

SUPPA Relaxation of the temperature

The full-frequency time-dependent solution for a unit Doppler profile source for T = 10K gives:



This is a surprise: it is the thermodynamically-motivated definition of light temperature which converges to the matter temperature, not the frequency-dependent definition.

This is good news for the Wouthuysen-Field mechanism, since it can be shown: $T_{\alpha} = \langle T_{u} \rangle_{H}$.

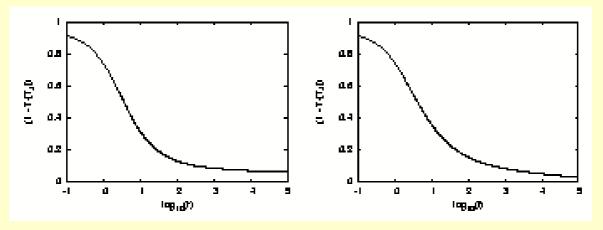
How fast is equilibrium reached?

Two cases:

- Static medium
- Expanding medium

Static medium:

2nd order F-P

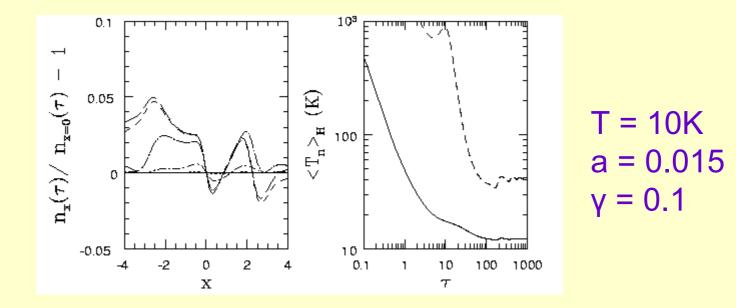


Higgins & AM

Including expansion

Allowing for cosmological expansion has only a small effect once steady-state equilibrium is achieved (Chen & Miralda-Escude 1994).

In more extreme situations (eg, an AGN jet or wind), the expansion may lead to a freezing out of the light temperature with $T_{\alpha} \neq T$:



- The definition of the **light temperature** may be physically motivated through thermodynamics considerations.
- The light temperature approaches the kinetic temperature within about 1000 scattering times at line centre.
- Convergence of the light temperature to the kinetic temperature to better than a few percent may take more than 10⁵ scattering times.
 - This means Lyα heating could be cosmologically significant for bright sources (10 x W-F coupling rate).
- The light temperature can freeze out in extreme flows, never converging to the kinetic temperature.

