Finding gravitational lenses with LOFAR

Olaf Wucknitz

wucknitz@jive.nl

Astrophysics in the LOFAR era, Emmen, 23-27 April 2007

Finding gravitational lenses with LOFAR

• Why lensing?

• Why LOFAR?

LOFAR (lens) surveys

★ source-targeted

★ lens-targeted

What's needed?

titlepage introduction summary contents

back forward

previous next

fullscreen

1

Relevant aspects of (strong macro-) lensing

cosmology, Hubble constant
★ time-delays
★ good lens models

mass distributions, models
* global profile
* substructure

★ central concentration

propagation effects

lens as natural telescope ~> Mike Garrett

Measuring distances with time-delays

distance ratios known
angles measurable
geometry can be determined
need *one* length for scale
w use *time-delay* !

Refsdal (1964), MNRAS 128, 307 :

 $\sim \rightarrow$

$$arDelta t \propto rac{D_{
m d}\,D_{
m s}}{D_{
m ds}} \propto rac{1}{H_0}$$
 .

can determine Hubble constant!

back forward

The double QSO 0957+561

titlepage introduction summary contents

back forward

previous next

Direct motivation for modelling

direct information about mass distribution

Iuminous and dark

even high redshift

 un-biased by light in the radio: unbiased by dust! (also no ML)

→ unique tool for structure and evolution of galaxies

- ★ large-scale mass profile
- ★ CDM substructure
- ★ central mass concentrations (central images)

Mass model constraints for 0957+561

The ten image system B1933+503

IMAGE PLANE

SOURCE PLANE

Global mass profile: B0218+357

SLACS

		6,	
J073728.45+321618.5	J095629.77+510006.6	J120540.43+491029.3	J125028.25+052349.0
J140228.21+632133.5	J162746.44-005357.5	J163028.15+452036.2	J232120.93-093910.2
	Einstein Ring Gr	avitational Lenses	

Hubble Space Telescope • Advanced Camera for Surveys

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team

STScI-PRC05-32

titlepage introduction summary contents

back forward

SLACS (+ LSD) and radial mass profiles

lensing: mass within R_E

• velocity dispersion: \sim mass within $R_{
m e}$

- combine the two for mean slope $ho \propto r^{-\gamma}$

• all isothermal!

like spiral 0218+357

extension with weak lensing
 [Gavazzi et al. (2007)]

 \rightsquigarrow 3-300 $h^{-1}\,{
m kpc} = 1-100\,R_{
m eff}$

titlepage introduction summary contents

Mass substructure: simulations

[Springel et al. (2005), Virgo Consortium & MPA]

titlepage introduction summary contents

back forward

previous next

Mass substructure: B0128+437

titlepage introduction summary contents

back forward

previous next

Central images?

titlepage introduction summary contents

back forward

previous next

Extended sources

good: compact sources provide some information
 ★ CLASS survey, completeness for compact sources

better: many components
 ★ some systems

best: lensed extended sources

 \star find them!

go to low frequencies
* low surface brightness
* steep spectrum
* star-bursts

caveat: modelling difficult

LOFAR surveys

survey array	frequency rms/flux limit	area definition	number of sources density	resolution (400 km)
LOFAR-120	$120{ m MHz}$ $14/43\mu{ m Jy}$	half-sky	$860\! imes\!10^{6}$ $42000/{ m deg}^{2}$	1."3
LOFAR-200	$200{ m MHz}$ $4.7/14\mu{ m Jy}$	$250 deg^2$	$30{ imes}10^{6}$ 120 000/ deg 2	0."8
FIRST, VLA B	1.4 GHz 0.15/1 mJy	galactic caps 9033 deg ²	811000 $90/{ m deg}^2$	5″
NVSS VLA D/DnC	1.4 GHz 0.45/2.5 mJy	$\delta > -40^{\circ}$	$1.8\! imes\!10^6$ 53/ deg 2	45″
WENSS+WISH WSRT	330 MHz 4/18 mJy	δ > +30° -26°< δ < -9°	230000 $22/deg^2$	\geq 60 $^{\prime\prime}$
VLSS VLA BnA/B	74 MHz 0.1/0.5 Jy	$\delta>-30^\circ$	$\sim \!\! 90000$ $3/ \mathrm{deg}^2$	80″

Potential for lens searches

assumptions

★ 400 km baselines with sufficient sensitivity

- ★ long baselines included for surveys
- \star lensing rate \sim 1:2000 (higher for extended sources)

direct identification possible for first time

• LOFAR-120

S/N > 30

• LOFAR-200

430 000 lenses

43 000 lenses

15 000 lenses

S/N > 30

1500 lenses

problem: avoid false positives!

• aim for rejection rate of $\gtrsim 99.5-99.95\%$

titlepage introduction summary contents

back forward

Realistic source-targeted search

LOFAR-120

* high rejection rate needed (source numbers!)

★ resolution not sufficient

★ currently not realistic

LOFAR-200 \star separations > 1" (60%)

\star rejection rate 99.7 %

titlepage introduction summary contents

previous next

fullscreen

 ~ 900 lenses

 $\sim 10\,000$ candidates

Target the lenses

We know where the lens galaxies are! ★ optical surveys \star well defined samples SDSS LRG ★ typ. *z* = 0.15–0.5 \star typ. lensing separation 1."2 $\star \sim 100\,000$ galaxies search for LOFAR sources close to optical galaxies # lenses = $A \times n_{g} \times \sigma \times n_{s}$ × corrections \star typ. $z_{\rm s} > z_{\rm g}$

5000 candidates

LOFAR-120 + SDSS LRG

offsets for compact sources ~~ Neal [Jackson & Browne (2007)]

500 lenses

FIRST + APM/SDSS

similar approach tried for lensed radio lobes [*Lehár et al. (1993), Lehár et al. (1993), Lehár et al. (2001), Haarsma et al. (2005)*]

* 125 lobe + galaxy combinations
* 3 good candidates
* 1 certain lens (known before)

reasons for 'failure'

★ size of radio lobes (many arcsecs)
★ resolution of FIRST (5")
→ too many candidates
→ difficult identification

[Lehár et al. (1993)]

titlepage introduction summary contents

Summary LOFAR lens searches

source-targeted
 ★ LOFAR-200

★ resolution critical

lens-targeted
 LOFAR-120 + SDSS LRG

 $\sim 900 \ {\rm lenses}$

10000 candidates

 $\sim 500 \ \text{lenses}$

5000 candidates

★ radio properties?★ cluster lenses → Mike Garrett

1000 – 2000 new radio lenses (now: < 40)</p>

need long baselines

Study of new lenses

• many (> 50%) extended on scales 1-2''

- many star bursts (structure on small scales!)
- follow-up and detailed observations
 - ★ EVLA
 - ★ e-MERLIN
 - ★ VLBI

Iens modelling: combined source and lens reconstruction

- ★ LensClean
- ★ semi-linear methods

structure and evolution of galaxies

 $\sim \rightarrow$

Organisation

 small group based in Bonn (University) start August 2007 for 5 years • me $+ 2 \times 3$ years PhD fellowships + ?job advert! funding from DFG (german science foundation) work programme \star prepare for the lens search * simulations of realistic E-LOFAR array * lens-selection algorithms * analysis methods (deconvolution, lens modelling) * study of individual systems part of GLOW, connection to survey KSP close collaboration with Neal Jackson and Mike Garrett

Contents

1	Finding gravitational lenses with LOFAR
2	Relevant aspects of (strong macro-) lensing
3	Measuring distances with time-delays
4	The double QSO 0957+561
5	Direct motivation for modelling
6	Mass model constraints for 0957+561
7	The ten image system B1933+503
8	Global mass profile: B0218+357
9	SLACS
10	SLACS (+ LSD) and radial mass profiles
11	Mass substructure: simulations
12	Mass substructure: B0128+437
13	Central images?
14	Extended sources
15	LOFAR surveys
16	Potential for lens searches
17	Realistic source-targeted search

- 18 Target the lenses
- 19 FIRST + APM/SDSS
- 20 Summary LOFAR lens searches
- 21 Study of new lenses
- 22 Organisation
- 23 Contents