Solar radio physics with LOFAR : constraints & perspectives

NoRH 17 GHz / 1.8 cm

SUN 1991 Sep 26 1.4 GHz VLA 1.4 GHz / 21 cm

NRH 0.327 GHz / 91 cm

Karl-Ludwig Klein, Claude Mercier, Alain Kerdraon

Radio observations of the solar corona

- Radio waves from the solar atmosphere :
 - Propagation at $v > v_{pe} \sim \sqrt{n_e} \Rightarrow$ emission frequency decreases with increasing altitude
 - Radio imaging = sounding of different heights at different frequencies
- Emission processes :
 - free-free (quiet Sun)
 - (gyro)synchrotron (bursts, cm-m- λ)
 - collective emission at v_{pe} or $2v_{pe}$ (bursts, dm-m- λ)

Observations of the solar corona at m- λ : why ?

- Plasma diagnostics of the quiet corona (n_e, T, B) and the nascent solar wind
- The Sun as a particle accelerator (high corona) :
 - « Quiet-time » non thermal e-populations
 - e- accelerated during CME and at coronal shocks
 - Energetic particle propagation (corona, IP space)
- Coronal magnetic topology, mass ejections (CME), shocks

Limitations to solar radio imaging at m- λ

- Spatial resolution limited by propagation effects :
 - Corona : scattering \Rightarrow broadening
 - Modelling : apparent source sizes $\sim 5'$ at 100 MHz (Bastian)
 - Observation : no structure <60" (236 MHz, NRH GMRT)
 - Baselines < 10 km needed for solar observations
 - Ionosphere : (unpredictable) gravity waves, esp. in winter, ray deviation ${\sim}\nu^{\text{-}2}$
 - Apparent shifts of source centroids
 - Image distorsion, possible destruction (focussing)
 - Variable due to flare-produced EUV & XR (large flares)
- Imaging at v<60 (?) MHz may be difficult

Requirements for solar radio imaging

- A highly variable and unpredictable radio source :
 - VLA, NRH+GMRT : limited usefulness of campaigns
 - « alert » modes preclude studies of impulsive bursts and initial phases of flare activity (but : data buffer ?)
 - \Rightarrow Dedicated long-term observations at high time resolution
- Spectrum : no lines, but structured features covering wide frequency range
 - \Rightarrow Imaging over wide frequency range, (5-10) frequencies (may be adapted to specific programmes).

Coronal plasma diagnostics : EUV and radio

- What is the density and temperature structure in the quiet corona ?
- Is there a consistent picture from EUV and radio observations ?
- What is the e⁻ distribution function in the low / middle corona ? Can we detect non-maxwellian features (Chiuderi & Chiuderi-Drago 2004 AA 422, 331) ?

NRH (432 MHz): C. Mercier

SXR : SXI (NOAA)

Coronal plasma diagnostics : EUV and radio

- What is the density and temperature structure in the quiet corona ?
- Is there a consistent picture from EUV and radio observations ?
- What is the e⁻ distribution function in the low / middle corona ? Can we detect non-maxwellian features (Chiuderi & Chiuderi-Drago 2004 AA 422, 331) ?

NRH (237 MHz): C. Mercier

Coronal plasma diagnostics : EUV and radio

- What is the density and temperature structure in the quiet corona ?
- Is there a consistent picture from EUV and radio observations ?
- What is the e⁻ distribution function in the low / middle corona ? Can we detect non-maxwellian features (Chiuderi & Chiuderi-Drago 2004 AA 422, 331) ?

NRH (164 MHz): C. Mercier

Mapping non thermal radio sources outside flares

- Non thermal e⁻ (some keV) in/above non-flaring *AR*. Multi- λ mapping : Where ? Trajectories? Circular polar : *B*.
- Origin of nonmaxwellian e⁻ populations in *IP* space ?

Mapping coronal shock waves

- Radio emission most direct evidence of coronal shocks
- Occurs with different kinds of other bursts (gyrosynch, plasma) : complex spectra

SXI 09:52:20 UT NRH (432 MHz)

Where do shocks develop? How are they related with *CME*, where are they located w/r to the whitelight signature of a *CME* (front ? flanks?)? Piston-driven ? Blast ?

Dauphin et al. 2006 AA

Mapping CME loops : relativistic electrons

- Synchrotron radiation from relativistic e⁻
- Where / when are they accelerated ?

QuickTime^a et un dŽcompresseur MPEG-4 vidŽo sont requis pour visionner cette image.

SoHO/LASCO

LOFAR's contribution to solar physics

- LOFAR can be a very useful tool for studying transient processes in the high corona related with flares and CME, provided :
 - Dedicated solar mode / long term observations
 - Mapping with high dynamic range (>10⁴)
 - Multi-frequency mapping with sub-second cadence
 - Ionospheric corrections including changes during flares
- LOFAR will need complementary observations:
 - Simultaneous spectral coverage (whole Sun, dm-hm- λ)
 - Radio imaging at higher frequencies (relationship high corona active region / primary flare signatures / CME origin)
 - Coronographic observations (STEREO ...)

Solar-dedicated radio imaging

Wave band	Instrument	Angular resolution	Time re- solution	Frequencies
mm/cm	Nobeyama RH	10″	0.1 s	17 & 34 GHz
cm/dm	Owens Valley	10″	~1 s	1-18 GHz
dm/m	Nançay RH	~1′	125 ms	450 … 150 MHz (<10)
m	Gauribidanur RH	~5′	145 ms	40-150 MHz
(cm-m	FASR	20″ / 1 GHz	0.1 s	100-30,000 MHz)

- + occasional solar observations at dm-m-λ : VLA (327, 75 MHz), GMRT (620, 325, 235 MHz), UTR-2 Kharkov 20-30 MHz
- LOFAR fills gap between ground-based and space-borne radio observations (Wind, STEREO, Solar Orbiter + Sentinels)