Particle Physics with LOFAR

Stijn Buitink Vrije Universiteit Brussel LOFAR Data School 21-11-2014

many thanks to Pim Schellart, Anna Nelles, Arthur Corstanje for plots, pictures, etc.!

Content

- Particle physics with a radio telescope?
- Working with data from the Buffer Boards
- Analysis techniques for timeseries data
- Introduction to LOFAR cosmic-ray analysis
 ...and some other cool stuff!

LHC collision energy: 14.000 GeV

UISSE

FRAN

Particle acceleration in source astrophysical shocks gamma rays neutrinos νμ΄ C. De Young cosmic rays π± B field

supernovae, AGNs, GRBs, ...

Earth's atmosphere

Cosmic energy scale

Cosmic-ray air showers

cosmic rays

Air Showers: Cascades of secondary particles *hadrons, muons, electrons, positrons, photons*, etc.

deflection of electrons/positrons in magnetic field transverse current produces radiation

ultra short pulse (10-100 ns) can be detected with radio antennas

Air showers detection with LOFAR

<u>Goal:</u>

understand origin of CRs around 10¹⁷ eV disentangle Galactic & extragalactic component

<u>Challenge:</u>

ultra-short signals (10-100 ns) random arrival time & direction complicated radiation mechanism

Transient Buffer Boards (TBBs)

- raw LOFAR data can be accessed via TBBs
- 5 seconds of data stored on ring buffer for each active antenna
- raw timeseries data or sub-band data
- 12 bit

Reading out TBBs

- Trigger strategies
- Manual trigger
- External trigger
- Local station trigger
- Central trigger

LOFAR Radboud Array (LORA) external cosmic-ray trigger

Calibration I

- Time scale too short to calibrate on single source
- Noise dominated by galactic background
- Noise curve measured for specific reference antenna
- All antennas are calibrated relative to reference antenna

Calibration II Absolute calibration strategies

1.Octocopter

3. Reference antenna on crane Absolute gain, antenna pattern, bandpass... in progress

The antenna model

- simulated with WIPL-D package
- complex response to incoming wave
- depends on direction, polarisation, frequency

Cleaning REFeaning & Gain calibr

Average of multiple block FFTs e.g. 2¹⁶ samples/block = 33 ms[•]–USektheseestability of Radio Frequency Multiple blocks to reduce noise

line identification:

- polynomial fit to baseline
- phase stability

Pulse finding

Hilbert Envelope

Hilbert transform

 $\mathscr{F}(\hat{x}(t))(\boldsymbol{\omega}) = -i \cdot \operatorname{sgn}(\boldsymbol{\omega}) \cdot \mathscr{F}(x(t))(\boldsymbol{\omega})$

Envelope $A(t) = \sqrt{x^2(t) + \hat{x}^2(t)}.$

Pulse arrival direction

Beamforming

very sensitive many local minima (side-lobes) Plane wave fit (using pulse arrival time)

less sensitive more stable

Pulse polarization

$$I = \frac{1}{n} \sum_{i=0}^{n-1} (E_{i,x}^2 + \hat{E}_{i,x}^2 + E_{i,y}^2 + \hat{E}_{i,y}^2),$$

$$Q = \frac{1}{n} \sum_{i=0}^{n-1} (E_{i,x}^2 + \hat{E}_{i,x}^2 - E_{i,y}^2 - \hat{E}_{i,y}^2),$$

$$U = \frac{2}{n} \sum_{i=0}^{n-1} (E_{i,x}E_{i,y} + \hat{E}_{i,x}E_{i,y}),$$

$$V = \frac{2}{n} \sum_{i=0}^{n-1} (\hat{E}_{i,x}E_{i,y} - E_{i,x}E_{i,y}).$$

Integrate Stokes parameters over bins containing pulse

angle of semi-major axis:

$$\Psi = \frac{1}{2} \tan^{-1} \left(\frac{U}{Q} \right).$$

degree of polarization:

$$p = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}.$$

Air shower detection with LOFAR

Nanosecond timing precision

Pim Schellart et al., JCAP 10 14 (2014)

Interference: emission pattern = asymmetric

ID 86129434

10-90 MHz

SB et al., Phys Rev D 90 082003 (2014)

zenith 31 deg 336 antennas $\chi^2 / ndf = 1.02$ ID 98345942 HBA 110-240 MHz

00

- High band: Cherenkov rings
- Harder to analyse due to tile beamforming

zenith 43 deg 231 antennas χ^2 / ndf = 1.9

Anna Nelles et al., submitted to Astropart. Phys.

CR mass composition proton penetrate deeper than iron nuclei

- In its first years of operation LOFAR has "solved" the radiation mechanism
- Now: astrophysics!
- Comparison to simulation gives
 mass composition of CR flux
- Changes in mass as a function of energy hint at different source component
- Searching for the transition Galactic/extragalactic sources

What else can we see...?

RS106

RS503

CS002

RS205

Trigger: manual

future: local station trigger?

$10^{20} - 10^{??} \text{ eV: Moon} = 10^7 \text{ km}^2 \text{ detector area}$

NuMoon: New Observation Mode

best limit @ WSRT offline analysis

new challenge: real-time analysis!

signal synthesis + trigger decision + communication

within 5 seconds

TBBs & you ?

- Transient Buffer Boards (TBBs) store 5 seconds of raw timeseries data
- Many triggering strategies possible
- Full-sky-all-the-time when running in background
- Cosmic rays, neutrinos from the Moon, lightning, fast radio bursts, ...

Thanks for your attention!