AST(RON

#### Just for reference:

| Username    | Password   | Reservation       | Node   |
|-------------|------------|-------------------|--------|
| ldscouple0  | 30ce4bda00 | dataschool2014_50 | lof001 |
| ldscouple1  | 30ce4bda01 | dataschool2014_50 | lof001 |
| ldscouple2  | 30ce4bda02 | dataschool2014_50 | lof001 |
| ldscouple3  | 30ce4bda03 | dataschool2014_51 | lof002 |
| ldscouple4  | 30ce4bda04 | dataschool2014_51 | lof002 |
| ldscouple5  | 30ce4bda05 | dataschool2014_51 | lof002 |
| ldscouple6  | 30ce4bda06 | dataschool2014_52 | lof003 |
| ldscouple7  | 30ce4bda07 | dataschool2014_52 | lof003 |
| ldscouple8  | 30ce4bda08 | dataschool2014_52 | lof003 |
| ldscouple9  | 30ce4bda09 | dataschool2014_53 | lof004 |
| ldscouple10 | 30ce4bda10 | dataschool2014_53 | lof004 |
| ldscouple11 | 30ce4bda11 | dataschool2014_53 | lof004 |
| ldscouple12 | 30ce4bda12 | dataschool2014_54 | lof005 |
| ldscouple13 | 30ce4bda13 | dataschool2014_54 | lof005 |

| Username    | Password   | Reservation       | Node   |
|-------------|------------|-------------------|--------|
| ldscouple14 | 30ce4bda14 | dataschool2014_54 | lof005 |
| ldscouple15 | 30ce4bda15 | dataschool2014_55 | lof006 |
| ldscouple16 | 30ce4bda16 | dataschool2014_55 | lof006 |
| ldscouple17 | 30ce4bda17 | dataschool2014_55 | lof006 |
| ldscouple18 | 30ce4bda18 | dataschool2014_56 | lof007 |
| ldscouple19 | 30ce4bda19 | dataschool2014_56 | lof007 |
| ldscouple20 | 30ce4bda20 | dataschool2014_56 | lof007 |
| ldscouple21 | 30ce4bda21 | dataschool2014_57 | lof008 |
| ldscouple22 | 30ce4bda22 | dataschool2014_57 | lof008 |
| ldscouple23 | 30ce4bda23 | dataschool2014_57 | lof008 |
| ldscouple24 | 30ce4bda24 | dataschool2014_58 | lof009 |
| ldscouple25 | 30ce4bda25 | dataschool2014_58 | lof009 |
| ldscouple26 | 30ce4bda26 | dataschool2014_58 | lof009 |

# Log in to CEP3

AST(RON

Log in to the LOFAR portal:

> ssh ldscoupleXX@portal.lofar.eu

Go on to the head node op CEP3:

> ssh lhd002

Now activate a dummy session using your reservation:

> use Slurm

> srun -A dataschool2014 --reservation=dataschool2014\_XX -u bash -i

Note the hostname of your assigned node, something like **lof0XX** Open a new terminal to do your actual work (keep previous terminal open)

- > ssh -Y portal.lofar.org
- > ssh -Y lhd002
- > ssh -Y lof0XX

Verify that graphics forwarding works:

> geany

We'll start working on the head node (no serious processing), so exit the **lof0XX**-node for now to come back to **lhd002** 

> exit



### **Explore data**



The full data for this tutorial is stored in **1hd002:/data/scratch/dataschoo1/imaging** Have a look at this data and get an idea about the size of the measurement sets

- > cd /data/scratch/dataschool/imaging
- > du -hs .
- $\star$  How much disk space does the total observation take?

 $\star$  How many subbands were recorded for the calibrator, how many for the target?

To have a closer look, we need some astronomical tools.

> use Lofar

Now we can see some real information:

- > cd /data/dataschool2014/imaging/target
- > msoverview in=L114221\_SAP000\_SB031\_uv.MS
- $\star$  Which field was observed?
- $\star$  What was the duration of this observation?
- $\star$  What was the center frequency of this subband?
- ★ How many channels (frequencies) are in there? More verbose information:

> msoverview in=L114221\_SAP000\_SB031\_uv.MS verbose=true

- $\star$  What is the number of time slots? What is the integration time?
- ★ How many stations, how many baselines? (And what is the relation?)

| ssh     ssh       dijkema@lhd002:/data/dataschool2014/imaging/calibrator\$ msoverview in=L114220_SAP000_S0044_uv.MS/       msoverview: Version 20110407Gv0       MeasurementSet Name: /data/dataschool2014/imaging/calibrator/L114220_SAP000_S0044_uv.MS/       MS     MS Version 2       This is a raw LOFAR MS (stored with LofarStMan)       Observer: unknown     Project: MSSS_HBA_2013       Observation: LOFAR       Antenna-set: HBA_DUAL_INWER       Data records: 51330     Total integration time = 50.0006 seconds       Observed from 29-Mar-2013/13:59:48.0     to 29-Mar-2013/14:00:46.1 (UTC)       Fields: 1     ID       ID     Code Name       0     BEAM_0       0     I:37:41.299440 +33.09.35.13240       SpwID     Name #Chans       FrameCh1(MHz)     ChanWid(kHz)       ChanWid(kHz)     CtrFreq(MHz)       SpwID     Name #Chans       FrameCh1(MHz)     ChanWid(kHz)       ChanWid(kHz)     CtrFreq(MHz)       Gase44     64       G4     TOPO       143.066     3.052       195.3     143.1625       X     Y       dijkema@lhd002://data/dataschool2014/imaging/calibrator\$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>Hijkema@lhd002:/data/dataschool2014/imaging/calibrator\$ msoverview in=L11422@_SAP000_S0044_uv.MS/ Hsoverview: Version 201104076v0 MeasurementSet Name: /data/dataschool2014/imaging/calibrator/L114220_SAP000_S0044_uv. MS Version 2 This is a raw LOFAR MS (stored with LofarStMan) Observer: unknown Project: MSSS_HBA_2013 Hservation: LOFAR Intenna-set: HBA_DUAL_INNER Nata records: 51330 Total integration time = 50.0006 seconds Observed from 29-Mar-2013/13:59:48.0 to 29-Mar-2013/14:00:46.1 (UTC) Fields: 1 ID Code Name RA Decl Epoch nRows 0 BEAM_0 01:37:41.299440 +33.09.35.13240 J2000 51330 ipectral Windows: (1 unique spectral windows and 1 unique polarization setups) SpwID Name #Chans FrameCh1(MHz) ChanWid(kHz) TotDW(kHz) CrrFreq(MHz) Corrs 0 SB-44 64 TOPO 143.066 3.052 195.3 143.1625 XX XY YX YY Hijkema@lhd002:/data/dataschool2014/imaging/calibrators III</pre>                                                                                                                                                                                                 |
| ata records: 51330 Total integration time = 58.0006 seconds<br>Observed from 29-Mar-2013/13:59:48.0 to 29-Mar-2013/14:00:46.1 (UTC)<br>ields: 1<br>ID Code Name RA Decl Epoch nRows<br>0 BEAM_0 01:37:41.299440 +33.09.35.13240 J2000 51330<br>pectral Windows: (1 unique spectral windows and 1 unique polarization setups)<br>SpwID Name #Chans FrameCh1(MHz) ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) Corrs<br>0 SB-44 64 TOPO 143.066 3.052 195.3 143.1625 XX XY YX YY<br>ijkema@lhd002:/data/dataschool2014/imaging/calibrators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)<br>SpwID Name #Chans FrameCh1(MHz) ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) Corrs<br>0 SB-44 64 TOPO 143.066 3.052 195.3 143.1625 XX XY YX YY<br>dijkema@lhd002:/data/dataschool2014/imaging/calibrators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| dijkema@lhd002:/data/dataschool2014/imaging/calibrator\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## Get rid of LofarStMan



msoverview mentions: This is a raw LOFAR MS (stored with LofarStMan) This means the data cannot be handled with casa. Let's grab a copy in casa format. First, go to the compute node, and make a directory to do your work in.

- > ssh -Y lof0XX
- > cd /data/scratch/school\_tmp
- > mkdir yourname
- > cd yourname

Now we should convert the data to something in casa format.

```
> geany DPPP-makeplain.parset # or vim, emacs, nano, ...
```

Put the following commands in the parset and save it: msin=/data/dataschool2014/imaging/target/L114221\_SAP000\_SB031\_uv.MS msout=L114221\_SAP000\_SB031\_uv\_plain.MS msin.autoweight=true steps=[] Now run DPPP on this parset:

> DPPP DPPP-makeplain.parset

Now we have our own copy which can be opened in casa tools

### casaplotms

Try to open the data in casa tools:

- > use Casa
- > casaplotms &

Open your MS from the GUI. To speed up plotting, only plot the xx correlation. Select only cross correlations by typing \*&\* in the antenna field

(\*: any antenna, &: cross correlations) Note the large spikes: probably RFI. Adjust the y-scale to find any real signal. In the Axes tab, set max y-scale to something sensible.

 ★ Does the scale of the signal make sense to you? (answer: no)



AST(RON

# rfigui

#### rfigui makes plots to detect RFI

> rfigui L114221 SAP000 SB031 uv.MS

In the dialog, just choose 'Open' Press 'Forward' to see data for the first baseline: LOFAR CS001HBA0 × LOFAR CS001HBA1

The spikes we spotted are clearly RFI. Some are broadband, some are not.

Create a power spectrum plot (plot menu).

What is the interference at 134.375 X MHz?

rfigui (aoflagger) can also flag the data: Actions, Execute Strategy

Make a power spectrum plot (Plot menu).

Find other useful plots in the plot menu.



AST(RON

## aoflagger



The AOFlagger can be called with DPPP.

- > cd /data/scratch/yourname
- > geany DPPP-flag.parset
  - # or vim, emacs, nano, ...

Enter the following contents in the parset: msin=L114221\_SAP000\_SB031\_uv\_plain.MS msout=.

steps=[preflagger, aoflagger]

preflagger.baseline=\*&&& # autocorr's

Now run your first real action:

> DPPP DPPP-flag.parset

From the output:

- ★ Which station/ant was most affected?
- ★ Which channel was most affected?
- Re-examine the data with casaplotms
- > casaplotms

Does it look reasonable now?





# demixing

AST(RON

The observation we were working on was far from bright sources, so demixing is not necessary. Let's work on another one for now, which has been flagged already.

The data is in /data/dataschool2014/imaging/demix/

★ Find out the pointing with **msoverview** 

★ Which A-team sources would interfere?



R.A. (2000.0)

We will demix this data and average it in time and frequency. We need a model of the A-team sources: scp -r lhd002:/data/dataschool2014/imaging/demix/Ateam.sourcedb .

You can verify the contents of the sourcedb with showsourcedb: showsourcedb in=Ateam.sourcedb mode=patch

```
Use the following parset for DPPP:

msin=/data/dataschool2014/imaging/demix/HBA_L249986_SAP000_SB226_uv.MS

msout=HBA_L249986_SAP000_SB226_uv_demixed.MS

steps=[demix]

demix.subtractsources=[CygA]

demix.skymodel=Ateam.sourcedb

demix.timestep=5

demix.freqstep=8

★ How much did we decrease the data in size? What did you expect?
```

 $\star$  Have a look with casaplotms at data before and after. Did we succeed in demixing?

### averaging



Back to our original reduction (no demix). The data has been flagged, so now we can average it down in time and frequency. msin=L114221\_SAP000\_SB031\_uv\_plain.MS # The 'plain' data msout=L114221\_SAP000\_SB031\_uv\_plain\_avg.MS steps=[averager] averager.timestep=5 averager.freqstep=8 Run this parset through DPPP. ★ Do you get the compression you expected?

```
As the name suggests, DPPP (Default PreProcessing Pipeline) was designed do
pipelines of steps. We could have done our reduction in one go:
msin=L114221_SAP000_SB031_uv.MS # The raw data
msin.autoweight=true
msout=L114221_SAP000_SB031_uv_avg.MS
steps=[preflagger,aoflagger,averager]
preflagger.baseline=*&&&
averager.timestep=5
averager.freqstep=8
```

## scripting



Congratulations on reducing your first data set! Only 179 to go :-)

We are not going to do this by hand.

Write a script in your favorite language (which should be bash or python) that processes a number of subbands.

Not all data are available on the compute nodes (lof0XX) yet, you can copy them from the head node as lhd002 follows:

> scp -r lhd002:/data/dataschool2014/imaging/target/L114221\_SAP000\_SB031\_uv.MS .

Tip: you can override keys in your parset by specifying them on the command line: DPPP reduction.parset msin=another.MS msout=another\_avg.MS

A possible solution in bash:

```
for inputname in $(ssh lhd002 'ls /data/dataschool2014/imaging/target'); do
    echo "Copying ${inputname} from head node to working node"
    scp -rq lhd002:/data/dataschool2014/imaging/target/${inputname} .
    outputname=$(echo ${inputname} | sed "s/\.MS/_processed.MS/")
    echo ${outputname}
    DPPP DPPP-all.parset msin=${inputname} msout=${outputname}
    echo "Removing raw data ${inputname} from working node"
    rm -rf ${inputname}
```