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Outline 29 / e ASTRON

o AIM: This lecture aims to give a general overview to the calibration of LOFAR imaging
synthesis data.

e TOPICS:
1) The radio interferometric measurement equation (ME)
2) The calibration strategy and Black Board Self-calibration (BBS)

3) Sky models
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4) Beam models
)
) Inspecting solutions
)

Wide-bandwidth calibration

e REFERENCE: The LOFAR Imaging Cookbook
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e RIME: The radio interferometer measurement equation, as used by CASA etc. for
the calibration,

Gain amplitude Errors due to
Baseline based, and phase elevation Opacity and path
non closing errors length variation

Observed visibility obs __ true true visibility for
for ant. / and j Vij = MijBijGejDij i Pij Ti Vi ant.  and j
Bandpass Change in
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e Calibration involves solving this inverse problem to determine what set of
parameters are needed to minimise the difference between the observed
visibilities and the model visibilities (our best guess at the frue visibilities).
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e Black Board Self-calibration (BBS) is a software package that is designed for
the calibration and simulation of LOFAR data. Needed because:

1) LOFAR data is very large (6 h observation can be >100 TB), needs to be
processed in a distributed fashion.

2) Must account for direction dependent effects.

e The term “Black Board” relates to the chosen architecture that has been
implemented to control the calibration on a distributed cluster - many of the
calculations are done on the local nodes, only management through databases is
needed globally.

e BBS can be run in two ways:
e Standalone: The calibration of 1 sub-band.

o Global parameter estimation: The calibration of multiple sub-bands.

> calibrate-stand-alone -f <MS> <parset> <source catalog>



Black Board Self-calibration (BBS)
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Application Configuration and
Control:Configuration is done with
a user supplied parset file.

Imager: Fourier transforms
the residual visibilities
produced by BBS into a sky
image.

configuration 1 control

uncalibrated residual
visibilities visibilities

OLAP Imager

On-Line Application Processing:
Stores observational data as
Measurement Sets (MS). retrieve update

Parmdb: Stores the values of

the various models (sky,
Parameter ionosphere, instrument) used in
Database self-calibration.
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o The BBS kernel (the bit that does the work) can support an number of operations
that are carried out locally on each compute node,

1. PREDICT: Predict (simulate) visibilities based on a model that describes the
sky, the environment (e.g. ionosphere), and the instrument.

2. SUBTRACT: Predict visibilities for one or more source(s) and subtract the
result from the observed visibilities.

3. CORRECT: Correct the observed visibilities for a given reference (source)
direction.

4. SHIFT: Phase shift the observed visibilities to a different phase centre.

5. GENERATE EQUATIONS: Generate condition equations in a form that can be
fed to the solver. Condition equations relate the model parameters to the
difference between the observed visibilities and the predicted visibilities
(based on the model).

e This information is used globally to carry out the operation,

6. SOLVE: Determines the calibration parameters.



Example parset file 2 et ASTRON

Strategy.ChunkSize = 0
Strategy.Steps = [solve,correct]

Step.solve.Operation = SOLVE
Step.solve.Model.Sources = [3c48]
Step.solve.Model.Gain.Enable = T
Step.solve.Model.Beam.Enable = T
Step.solve.Solve.Parms = ["Gain:0:0:*","Gain:1:1:*"]
Step.solve.Solve.CellSize.Freq = 0
Step.solve.Solve.CellSize.Time = 1
Step.solve.Solve.CellChunkSize = 10
Step.solve.Solve.Options.MaxIter = 50
Step.solve.Solve.Options.EpsValue = 1e-9
Step.solve.Solve.Options.EpsDerivative = 1e-9
Step.solve.Solve.Options.ColFactor = 1e-9
Step.solve.Solve.Options.LMFactor = 1.0
Step.solve.Solve.Options.BalancedEqs = F
Step.solve.Solve.Options.UseSVD =T

Step.correct.Operation = CORRECT
Step.correct.Model.Gain.Enable = T
Step.correct.Model.Beam.Enable = T
Step.correct.Model.Sources = [3c48]
Step.correct.Output.Column = CORRECTED_DATA




The standard imaging pipeline
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o To determine our calibration parameters (the elements in our Jones Matrices) we
need to compare the observed (corrupted) visibilities with the real visibilities...
need to use a model for the sky.
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e In beam calibration can be used: Good because the amplitude and phase
variations can be tracked over time, but bad because the model is complicated.



The effect of a poor model
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Need good models of structure on the smallest-scales to calibrate the 30--100 km
Remote Stations - Your calibration is only as good as your model!

G table: CygA call G table: 9.gcal

Gain Amplitude

12:00:00.0

02:24:00.0 04:48:00.0 07:12:00.0 09:36:00.0 12:00:00.0 02:24:00.0 04:48:00.0 07:12:00.0 09:36:00.0
Time Time

Initial Model Better after self calibration

e Self-calibration can help a lot: Nant unknowns Nand Nant - 1)/2 constaints!

e A survey to establish the LOFAR initial sky model, that can be used for the first
round of calibration available (use this as your starting model).
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e The Multi-frequency Snapshot Sky Survey (MSSS; Heald et al. 2015) will provide
an initial Global Sky Model (GSM) at 2 arcmin resolution (at 110-160 MHz).

H~ o =
o RN

JZ2000 Declingtion

il Weighting: Briggs
Robust= 0

Bl UVmax = 2
M Beam#@ize: 2.2 x 2.4 arcmin
Processing time: 8 min

JZ000 Right Ascension

e Re-process the 15 min of visibility data at full resolution to determine the best
starting sky model for your observation (could save you a lot of time).
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e The Multi-frequency Snapshot Sky Survey (MSSS; Heald et al. 2015) will provide
an initial Global Sky Model (GSM) at 2 arcmin resolution (at 110-160 MHz).

JZ2000 Declingtion

il \Weighting: Briggs
Robust= 2

l UVmax = ALL
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e The sky model can be specified in two ways (#1 is favoured):

1. A text file containing the properties of the sources (position, flux, size,
spectral index, polarisation).

# (Name, Type, Ra, Dec, I) = format
CygA.E, POINT, 19:59:31.60000, +40.43.48.3000, 1.25
CygA.W, POINT, 19:59:25.00000, +40.44.15.7000, 1.0

2. As a model image (clean component, multi-scale clean, compressed
sensing, Bayesian likelihood) which is directly converted to model
visibilities with the PREDICT option within BBS.

> addUV2MS -w 512 L24380SB030uv.MS.dppp.dppp $HOME/Images/3C196_5SBs.model

e Method two adds a new column to the MS that can be specified during the
calibration. BUT, only should be used for complicated sources over a small field
of view (direction dependent effects are lost).

12
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o Unlike typical dish-based interferometers (e.g. JVLA, WSRT) the gain (amplitude)
of the visibilities are not constant.

e This is due to the source moving through the beam (+atmosphere+ionosphere),
effectively the change in the projected area of the station. Need beam correction

in the calibration.
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HBA (Core)

e The beam module emulates the distortions
(attenuation) caused by the beam of the station.

1. Element beam: response of a single dipole.

2. Array Factor: Combined dipole response.

e Example of the HBA (core) station beam at 150 MHz
(taken from MB’s “Lots Of Flimsy Antenna Rigs”
lecture.)

e Beam model is specified in the parset file.

Zenith angle [deg]

Model.Beam.Mode = ELEMENT # only element beam
Model.Beam.Mode = ARRAY_FACTOR # only array factor

Model.Beam.Mode = DEFAULT # both element beam and array factor (default)

14



Direction dependent effects (DDES)
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e Calibration solves for the elements in the Jones matrices in one direction, but
these solutions may not be valid over the wide field-of-view of our observations.
This requires direction dependent solutions to be determined.

e |In BBS, the sky is split into patches, and each patch is assumed to be satisfied
by an direction independent solution, i.e. the patch is small enough that DDE’s
are negligible.

Effect Description

ScalarPhase A phase that is equal for both dipoles direction dependent
Rotation Faraday Rotation without frequency dependency direction dependent
FaradayRotation Faraday Rotation direction dependent
DirectionalTEC TEC (ionosphere), see 6.7.5 direction dependent
Beam The LOFAR beam model. See 6.6.1 direction dependent
DirectionalGain Directional gain direction dependent
CommonScalarPhase Scalar Phase direction independent
CommonRotation Rotation direction independent
TEC TEC (ionosphere), see 6.7.5 direction independent
Gain Gain direction independent
Clock Clock direction independent
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Solving for DDE’s
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Total Electron Content (TEC) 4 /e ASTRON

groningen

e Free electrons in the ionosphere can attenuate radio emission when the
radiation frequency approaches the plasma frequency (Ne « V). Hence, the low

frequency cut-off

e The ionosphere can also introduce a frequency dependent phase shift in the
radio waves, and also varies with frequency

Difference in TEC between stations.

e Can solve for the differential
TEC using our sky model (if
we can separate the delay
introduced by the clocks).

e See next lecture for details.

e Parameters included in the
BBS parset file are, Step.<name>.Model.TEC.Enable = T

Step.<name>.Solve.Parms = [TEC:*]
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e A number of calibration strategies have been developed (see cookbook for
details).

1. Gain calibration (direction independent): Solves for a single direction
amplitude and phase solution and applies this to the visibility data. Useful
for targets that are bright objects in the field.

2. Gain calibration (direction dependent): Solves for the amplitude and
phase solution toward bright sources and subtracts them from the data,
and then solves for the amplitude and phase solution toward the target
field. Useful for calibrating targets that are faint objects in the field.

3. Gain Transfer: Use the gain calibration from a strong calibrator field to
calibrate the target field. Useful if there is no target field model, or if the
target field has no bright sources in-beam. There are two methods.

A. Cycle between observations of a calibrator field and the target field
to estimate the gain variations and transfer them to the target.

B. Use multi-beaming to simultaneously observe the calibrator field and
target field (helps remove temporal variations).

o We will use gain transfer during the tutorial, this afternoon.
19



Inspecting solutions %/ e ASTRON

e Always check your solutions! This is done by plotting the amplitude and phase
solutions for each station (direction) and flagging poor solutions (similar to what is

done for other interferometric arrays).

> parmdbplot.py SB23.MS.dppp/instrument/

8 0 0 \| cal_averaged.MS/instrument: Figure 1 e 00 \| target_averaged.MS/instrument: Figure 3
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Rapid phase variations
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e Phases for RS503 (Green; 3 km from Superterp) and RS208 (Blue; 30 km from
the Superterp).

CASA Plotter CASA Plotter

G table: 9.gcal G table: 9.gcal
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Phases change faster for longer Still trace the changes for 15s visibility
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The global bandpass 24 / e ASTRON

o |f your target is very strong and has a well defined spectrum, it is possible to
estimate the frequency dependence of the gains (e.g. Scaife & Heald 2012).

e In almost all cases, this is not possible, so we can apply our estimate of the
global bandpass to our target data.

Flux density [Jy]

102 10°
Freq [MHZz]
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o |f your target is very strong and has a well defined spectrum, it is possible to
estimate the frequency dependence of the gains (e.g. Scaife & Heald 2012).

e In almost all cases, this is not possible, so we can apply our estimate of the
global bandpass to our target data.

Normalized amplitude

0.8
115 120 125 130 135 140 145 150 155 160 165 170

Frequency [MHz]

.
=] o
2
= =y
13 13
g
3 3
s
N
© ©
E E
o
z z

175 180 185 190 195 200 205 210 215 220

Frequency [MHz]

22



groningen

Wide-bandwidth calibration 2 /e ASTRON

= LOFAR will have large fractional bandwidths (~48 to 96 MHz bandwidth between
10 -- 250 MHz).

Vwave vs. Uwave Vwave vs. Uwave
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-20,000

-20,000

]
-30,000 -20,000 -10,000 10,000 20,000 30,000 40,000
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-30,000

o e L ma e e )
-40,000 -30,000 -20,000 -10,000 0 10,000 20,000 30,000 40,000 50,000
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Amp vs. UVwave Amp vs. UVwave
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20,000 30,000 40,000 50,000
UVwave
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Multi-frequency synthesis 24 / e ASTRON
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= MFS represents the sky emission in terms of a Taylor series about a reference

frequency.
Taylor co-efficient images (Rau & Cornwell 2011)
i Ne—1
MS model image ‘ m __ t ysky t

=0
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Imaging results 2 /e ASTRON
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= MS-MFS Imaging of Cygnus
A (109 and 183 MHz), total
bandwidth 27.5 MHz.
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o AIM: This lecture aims to give a general overview to the calibration of LOFAR imaging
synthesis data.

e TOPICS:
1) The radio interferometric measurement equation (ME)
2) The calibration strategy and Black Board Self-calibration (BBS)
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e REFERENCE: The LOFAR Imaging Cookbook
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