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Measurements

lonosonde: measure the structure of the
different layers by investigating reflections of
different wavelengths

early radio astronomy
signals pass completely through
nowadays: satellites +GPS receivers

GPS data online available

fit to GPS data of many stations also online:
IONEX data
low time (1~2hr) and spatial (2.5 x2.5 degrees)
resolution

thin layer approximation
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CODE ionospheric data

CODE'S GLOBAL IONOSPHERE MAPS FOR DAY 181, 2012 — 00:00 UT Total EIeCtron
e : Content (TEC)
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Structure

The ionosphere is highly dynamic:

lonization through solar radiation (UV+X-ray)
Recombination at night
=> diurnal pattern

Scintillation (high turbulence):
(mostly) after sunset

Pressure + composition lower atmosphere
Travelling lonospheric Disturbances (TIDs)

Structure: Kolmogorov turbulence
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Solar activity follows
a 12 year cycle:

Currently we are In
a maximum

the current
maximum appears
to be much lower
than in previous
cycles.
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Structure

Cycle 24 Sunspot Number Prediction (January 2013)
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Structure

The ionosphere is highly dynamic:
lonization through solar radiation (UV+X-ray)
Recombination at night
=> diurnal pattern

Solar activity cycle

Scintillation (high turbulence):
(mostly) after sunset

Pressure + composition lower atmosphere

Structure: Kolmogorov turbulence
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Structure

The ionosphere is highly dynamic:
lonization through solar radiation (UV+X-ray)
Recombination at night
=> diurnal pattern

Solar activity cycle

Scintillation (high turbulence):
(mostly) after sunset

Pressure + composition lower atmosphere
Travelling lonospheric Disturbances (TIDs)
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Simulated Kolmogorov turbulence
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Electromagnetic Propagation

refractive index in ionized plasma:

o\ L1\ 40.3
n . — | . T JP ]
ph = ’ . - _\'

It frequency f (v) >> plasma frequency f(~10 MHz)

N, = electron density

excess path length P! /v2 : / N.dl

phase error: @;,,= 8.45e9 dTEC/v
dTEC in TECU (101° e/m?)
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Electromagnetic Propagation

refractive index in ionized plasma:

o\ L1\ 40.3
n . — | . T JP ]
ph = ’ . - _\'

It frequency f (v) >> plasma frequency f(~10 MHz)

N, = electron density

excess path length  PIyRYIVES / N.dI

phase error: @i, = 8.45e9 dTEC/v
dTEC in TECU (101° e/m?)
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Faraday Rotation

Rotation of linear polarization angle

Due to difference in index of refraction for
R and L polarization in plasma + magnetic field

i __? E'El d
o= R""Ih-" Ty RM = m‘/.ﬂ HE(S}E”{S)dS

i
----

Typical Rotation Measure:
0.5 rad/m”2 for ~10 TECU
Depending on viewing direction (parallel B-field)

Absolute TEC can be determined from polarized source (with known intrinsic
RM) and Earth Magnetic Field

Differential Faraday Rotation also significant effect on longer baselines (>10 km)
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Effects on radio propagation

Dispersive delays

Direction dependent/frequency dependent effect on
differential phases

Sensitive to differential TEC

Faraday Rotation

Rotation of polarization angle of polarized signal
Sensitive to absolute TEC
Differential Faraday Rotation:

Sensitive to relative TEC and (relative) B-field
Differential refraction (second order)

Displacement of relative source positions due to
refraction

absolute TEC

M.Mevius Ionospheric Effects
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Dispersive delays @ LOFAR

phase error: @, = 8.45 10° dTEC/V

typical variation LOFAR (NL) 80 km: 0.5- 1TECU
within a single HBA beam: ~0.1 TECU

110-180 MHz (HBA): 1 full 2m rotation @ 0.2 TECU
30-80 MHz (LBA): 1 full 21t rotation @ 0.035 TECU
time variability of ionosphere:

MTIDs ~ 15 min

moving turbulence: smaller amplitude, but
much faster variations

high time and frequency resolution needed for phase
solutions

11/18/14 M.Mevius Ionospheric Effects
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Image: V. Pandey
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Dispersive Delay Correction

selfcal phases contain different phase effects
@ LOFAR 2 dominant sources:

drifting clock errors
lonospheric phases

use frequency dependence + wide frequency range for
clock/TEC separation on phase solutions:

calibrator: apply clocks only (since ionosphere is
different in target field)

use ionospheric phases to generate phasescreen
for interpolation (direction dependent correction)

Inspect ionospheric conditions of observation

11/18/14 M.Mevius Ionospheric Effects
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Clock/TEC separation

Start from selfcal phases over wide frequency range.
Fit for A(clock) and B(TEC) In:

AO(V)=A-2rv +B-8.4479745-10° v

Complication 21t ambiguities:

If @ Is a solution sois @+2m
corresponds to fixed offset in clock and TEC

11/18/14 M.Mevius Ionospheric Effects
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Clock/TEC separation

Start from selfcal phases over wide frequency range.

=  dtec = 0.115, clock= 97.0
® o data

- dtec = 0.061, clock= 93.6 |
® o data +271
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frequency (MHz)
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Clock/TEC separation

Start from selfcal phases over wide frequency range.

Flt residuals

- fit - data
-  fit2 - data + 27
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Clock/TEC separation

Start from selfcal phases over wide frequency range.
Fit for A(clock) and B(TEC) In:

AO(V)=A-2rv +B-8.4479745-10° v

Complication 21t ambiguities:

If @ is a solution sois @+2m
corresponds to fixed offset in clock and TEC
Slow variation of clock/TEC solutions in time:

start with good solution for first timeslot, initialize
subsequent with previous solutions

11/18/14 M.Mevius Ionospheric Effects
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Clock/TEC separation

lattitude dependence dTEC

- GPS data
e®e averaged TEC (initial)
e®e averaged TEC (corrected)| |
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TEC solutions

dTEC solutions versus time, HBA all stations

dTEC different stations L85001
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TEC solutions

dTEC solutions versus time, HBA all stations

dTEC different stations L85|001
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Lonsdale regimes

clock/TEC separation: direction independent phases
spatial structure ionosphere:

Lonsdale (2005)
standard selfcal works only in regime 1 or 2

LOFAR: direction dependent effect

11/18/14 M.Mevius Ionospheric Effects
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Direction dependent correction methods
Field based calibration B. Cotton et. Al (2004)

works for linear gradients, higher order effects distort the source

-
—
e

Determine phase offsets from position shifts
Fit Zernike polynomials

Correct the data per facet for imaging

1st order effects only

Selt=Calibration

@ Cotton et al 2004
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Direction dependent correction methods

Methods that involve direction dependent calibration
(separate gain/phase solutions in direction of several sources/clusters)
Multi direction solve + subtract sources with their own solutions (eg.
Sagecal):
No correction for residuals
Phasescreen methods:
every station-direction pair corresponds to a piercepoint on 1 (or
more) thin layers
fit 2D function on piercepoint solutions and interpolate to get
phases in unknown directions
apply solutions:
facet imaging
subtract sky model with interpolated phase correction
A projection: apply screen during imaging step
See Wide Field imaging (S. vd. Tol, Wednesday)

11/18/14 M.Mevius Ionospheric Effects



Phasescreen examples: SPAM

ource eeling & tmospheric
odeling

Get @,,(t) from peeling of calibrators
Fit model on KL basis

Correct each facet with model phase
Make image

Not limited to gradients only

SPAM + facet imaging Intema et Al (2009)

11/18/14 M.Mevius Ionospheric Effects
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Phasescreen examples:MSSS (LBA)

TEC value was derived 90000
for each pierce point

every 10 seconds using

fit to phases across all 8
bands

Core stations + 5 remote

stations were used

7 11-minute snapshots

were used (first two

snapshots not used due

to poor solutions) ”
AWimager used to Propoe = distanosiim)
image + apply screen

40000

D. Rafferty + S. vd. Tol
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Detected Sources at 30 MHz
MSSS TECscreen + (>60 peak ﬂUX)
A projection / VAN Y
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Phasescreen Methods

ISSues:
needs several bright enough sources in FOV

ignores 3D structure of ionosphere

crossing of piercepoints depends on chosen
height of layer(s)

11/18/14 M.Mevius Ionospheric Effects
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Phasescreen Methods

ISSues:
needs several bright enough sources in FOV
ignores 3D structure of ionosphere

Plercepoints 7 directions Remote stations

Pierce Points at h = 450.00 km
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Phasescreen Methods

ISSUes:

11/18/14

needs several bright enough sources in FOV
source models
ignores 3D structure of ionosphere

crossing of piercepoints depends on chosen
height of layer(s)

3D tomography?

LOFAR beam errors give also direction
dependent phases

station dependent
makes phasescreen fitting more difficult

M.Mevius Ionospheric Effects
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Differential Faraday rotation

Rotation of the signal from XX,YY to XY,YX due to
different Faraday rotation angles for different antennas

HBA: small rotation most of the time
sometimes (“wild' ionosphere) visible in RAW uv data
LBA: significant effect

11/18/14 M.Mevius Ionospheric Effects
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Differential Faraday rotation

Rotation of the signal from XX,YY to XY,YX due to
different Faraday rotation angles for different antennas

HBA: small rotation most of the time

sometimes (“wild' ionosphere) visible in RAW uv data
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Differential Faraday rotation

Rotation of the signal from XX,YY to XY,YX due to different Faraday
rotation angles for different antennas

HBA: small rotation most of the time
sometimes (“wild' ionosphere) visible in RAW uv data

LBA: significant effect
Selfcal: either solve full polarization matrix or

diagonal gains + 1 rotation matrix

(ignoring differential B)

In principle possible to extract absolute TEC via:

ARM = ATEC- B, +TEC-AB,

In practice large uncertainty on ABH

11/18/14 M.Mevius Ionospheric Effects
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Differential Faraday rotation

Rotation of the signal from XX,YY to XY,YX due to different
Faraday rotation angles for different antennas

HBA: small rotation most of the time
sometimes (“wild' ionosphere) visible in RAW uv data
LBA: significant effect

Selfcal: either solve full polarization matrix or
diagonal gains + 1 rotation matrix

Differential Faraday rotation provides clean independent
measure of ionospheric fluctuations (ignoring differential B)

In principle possible to extract absolute TEC via:
ARM = ATEC- B +TEC-AB,

In practice large uncertainty on AB”

11/18/14 M.Mevius Ionospheric Effects
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RM correction
For polarization studies:

correct time variation of ionospheric Faraday
rotation

Calculate RM variation:

GPS data
Earth Magnetic Model:

WMM Maus, S., S. Macmillan, S. McLean, B. Hamilton, A. Thomson, M. Nair, and C.

Rollins, 2010, The US/UK World Magnetic Model for 2010-2015, NOAA Technical Report
NESDIS/NGDC.

|G RF Geophysical Journal International,Volume 183, Issue 3, pages 1216-1230, December 2010

Correct data using single rotation matrix

GPS models do not provide accurate enough
resolution to correct spatial variation

M.Mevius Ionospheric Effects
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Example Elais Field

after ion. RM corr. (®

244

a (J2000) a (J2000)
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http://arxiv.org/abs/1407.2093
http://arxiv.org/abs/1407.2093

Example Elais Field
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http://arxiv.org/abs/1407.2093
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Example Elais Field

Polarized Flux before (dashed) and after (solid) RM correction

16h27m40s
+51d40m12s

il [r‘ﬂd m _E]

V. Jelic et al (2014)

Initial LOFAR observations of Epoch of Reionization windows: |I.
Diffuse polarized emission in the ELAIS-N1 field
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Other methods

Pulsar (blue) and GPS +

11/18/14

use polarized source
to determine
lonospheric RM

PSR B1642 — 03
TEC & IGRF11 ||

Sotomayor-Beltran et al
(2013)

Calibrating high-precison Faraday
rotation measurements for LOFAR
and the next generation of low-
frequency radio telescopes

® PSR B2217 447
A TEC&ICGRFL (|,

M.Mevius Ionospheric Effects
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Conclusion

Effects of ionosphere large at low frequencies

time variation + frequency dependence requires
calibration with high time and frequency resolution

spatial variation requires direction dependent
calibration

dispersive delays sensitive to differential TEC

Interpolation to other directions via phasescreen
approaches

M.Mevius Ionospheric Effects

47



11/18/14

Conclusion (2)

Faraday rotation:
rotation of linear polarization angle
Differential Faraday rotation

significant effect for LBA
needs extra rotation matrix in ME

lonospheric RM correction:

using GPS data and Earth magnetic models
directly estimate RM from polarized sources

M.Mevius Ionospheric Effects
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FEAME NUMBEE: 3.0003000e+00

Scintillation

A30-Dec—2013 202 frames 3 PSF

FEAME NUMBER: 3.000000e+00
15—Des—2013

302 frames=

+50° 00" — +50°00' —

+45430' | L ad

44830 —

+489400' — +48°00'—

Declination {J2000)
1
Declination {I2000)

448430 — 4-40=30' =

4B 00— ’ 2 +48°00' |

gt14= 12= 10= aa™ as= W o= at14™
Right Ascenzion (J2000)

G.de Bruyn
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