

Netherlands Institute for Radio Astronomy

Tutorial 2: Calibration

E. Mahony Name speaker

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

Start from preprocessed data (flagged and averaged)

Log onto CEP3 as described in Tutorial 1:

- > ssh -Y portal.lofar.eu
- > ssh -Y lhd002
- > use Slurm
- > srun -A <accountname> --reservation=<reservationname> -t 600
- –u bash –i
- *In a new terminal*
- > ssh -Y portal.lofar.org
- > ssh -Y lhd002
- > ssh -Y lof0xx
- cd to your working directory
- > use Lofar

Start from preprocessed data (flagged and averaged)

- We need 1 subband of the calibrator and 1 subband of the target
 - They need to be at the same frequency and averaged the same way!!
- If you didn't get up to this step in yesterday's tutorial, copy from here (on your working node):

/data/dataschool2014/imaging/t1/L114220_SAP000_SB031_uv_averaged.MS/
/data/dataschool2014/imaging/t1/L114221_SAP000_SB031_uv_averaged.MS/

- For this tutorial I've renamed the filenames for simplicity (also good to create a backup):
 - > cp -rf L114220_SAP000_SB031_uv_averaged.MS/ cal_averaged.MS

Check calibrator and field data

• We need to calculate and transfer the solutions from the calibrator to the target field

This only works if the frequencies are **identical**

- > msoverview in=cal_averaged.MS
- > msoverview in=target_averaged.MS

```
mahony@lof013:/data/scratch/mahony/tutorial_t2$ msoverview in=cal_averaged.MS/
msoverview: Version 20110407GvD
MeasurementSet Name: /data/scratch/mahony/tutorial_t2/cal_averaged.MS
                                                                       MS Version 2
_____
  Observer: unknown
                    Project: MSSS HBA 2013
Observation: LOFAR
Antenna-set: HBA_DUAL_INNER
                     Total integration time = 60.0834 seconds
Data records: 10620
  Observed from 29-Mar-2013/13:59:48.0 to 29-Mar-2013/14:00:48.1 (UTC)
Fields: 1
 TD
    Code Name
                          RA
                                        Decl
                                                    Epoch
                                                               nRows
                          01:37:41.299440 +33.09.35.13240 J2000
 Ø
         BEAM 0
                                                               10620
Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)
 SpwID Name #Chans
                   FrameCh1(MHz)
                                   ChanWid(kHz) TotBW(kHz) CtrFreg(MHz)
                                                                  Corrs
 Ø
       SB-31
                   TOPO
                          134.300
                                       48.828
                                                 195.3
                                                         134.3735
                                                                  XX XY YX YY
                4
```

- Check if central frequencies are the same
- To do the calibration we need a parset file and a skymodel

Finding a skymodel for the calibrator

Running msoverview also gives us the position of the pointing centre (i.e. the calibrator source)

mahony@lof013:/data/scratch/mahony/tutorial_t2\$ msoverview in=cal_averaged.MS/ msoverview: Version 20110407GvD _____ MeasurementSet Name: /data/scratch/mahony/tutorial_t2/cal_averaged.MS MS Version 2 _____ Observer: unknown Project: MSSS HBA 2013 Observation: LOFAR Antenna-set: HBA_DUAL_INNER Data records: 10620 Total integration time = 60.0834 seconds Observed from 29-Mar-2013/13:59:48.0 to 29-Mar-2013/14:00:48.1 (UTC) Fields: 1 ID Code Name RA Decl Epoch nRows Ø BEAM 0 01:37:41.299440 +33.09.35.13240 12000 10620 Spectral Windows: (1 unique spectral windows and 1 unique polarization setups) ChanWid(kHz) TotBW(kHz) CtrFreg(MHz) Corrs SpwID Name #Chans FrameCh1(MHz) SB-31 TOPO 134.300 48.828 195.3 134.3735 XX XY YX YY

 A quick look in NED tells us that this is 3C48, a well known calibrator.

Finding a skymodel for the calibrator

 Check to see if 3C48 skymodel exists in the Models database on CEP3:

> cd /globaldata/COOKBOOK/Models

 Have a look at which models are available and copy the skymodel you prefer

(from your working directory)

> cp /globaldata/COOKBOOK/Models/3C48.skymodel .

> more 3C48.skymodel

mahony@lof013:/data/scratch/mahony/tutorial_t2\$ more 3C48.skymodel
(Name, Type, Ra, Dec, I, ReferenceFrequency='150.e6', SpectralIndex) = format

3c48, POINT, 01:37:41.299431, 33.09.35.132990, 70.399325, , [-0.396150,-0.650172,0.335733,-0.059050]

Note: if your calibrator source isn't there you can make your own skymodel – we'll come to this later

Writing the parset file

AST(RON

Can copy parset from /data/dataschool2014/lof013_t2/parsets/solvecal.parset

Run BBS

- Calibrate the data by running BBS. First look at the help file:
- > calibrate-stand-alone -h
- The run the calibration command with the relevant parset and skymodel:
- > calibrate-stand-alone -f cal_averaged.MS/ solvecal.parset 3C48.skymodel > solvecal.log &
- Check the log output to see if BBS finished successfully (or crashed)
- The solutions are stored in the instrument table check the solutions using parmdbplot:
 - > parmdbplot.py cal_averaged.MS/instrument/ &

00	X cal_av	eraged.MS/in	strument	
Gain:0:0:CS Gain:0:0:CS Gain:0:0:CS Gain:0:0:CS Gain:0:0:CS Gain:0:0:CS	001HBA0 001HBA1 002HBA0 002HBA1 003HBA0 003HBA1			1
Gain:0:0:CS Gain:0:0:CS Gain:0:0:CS Gain:0:0:CS Gain:0:0:CS Gain:0:0:CS	004HBA0 004HBA1 005HBA0 005HBA1 006HBA0 006HBA1			Ţ
🗖 Use resolu	ution	1953.125	Hz	0.601 s
	Plot		Close figures	

Inspect solutions

We only 60s of data, so there are not many solutions. Check that there are no bad solutions

Inspect solutions

Gain:0:0:RS409HBA

Note: the phases will usually change more rapidly on the longer baselines

Transfer solns to target field

> parmexportcal in=cal_averaged.MS/instrument/ out=3c48solns

Apply gain solutions to target field by doing a correct step in BBS:

> calibrate-stand-alone --parmdb 3c48_solns target_averaged.MS/ transfersolns.parset >
applycal.log &

transfersolns.parset:

```
Strategy.ChunkSize = 0
Strategy.Steps = [correct]
```

```
Step.correct.Operation = CORRECT
Step.correct.Model.Sources = []
Step.correct.Model.Gain.Enable = T
Step.correct.Model.Beam.Enable = F
Step.correct.Output.Column = CORRECTED_AMP
```

NOTE: do NOT apply the beam in this correct step. We only want to apply the beam at the last correct step before imaging!

Phase calibration on the field

Get a skymodel for the target field

- Run msoverview to get the co-ordinates of the pointing centre (RA=01:02:21.73, Dec=+31:27:36.0)
- Get the GSM skymodel for this field using gsm.py

> gsm.py -h

> gsm gsm.py targetfield.skymodel 15.59 31.46 3 1
Sky model stored in source table: targetfield.skymodel

> more targetfield.skymodel

mahony@lof013:/data/scratch/mahony/tutorial_t2\$ more targetfield.skymodel FORMAT = Name, Type, Ra, Dec, I, Q, U, V, ReferenceFrequency='60e6', SpectralIndex='[0.0]', MajorAxis, MinorAxis, Orientation # the next lines define the sources 0049.0+3220, POINT, 00:49:01.94880000, +32.20.23.20800000, 2.8587, , , , , [-0.5724, -0.1103] 0050.2+3229, POINT, 00:50:17.52960000, +32.29.14.38800000, 2.7945, , , , , [-0.657, -0.1036] 0050.9+3050, POINT, 00:50:56.46000000, +30.50.03.58800000, 1.2646, , , , , [-0.7373, -0.1638] 0053.7+2925, GAUSSIAN, 00:53:44.60880000, +29.25.10.88400000, 5.0451, , , , , [-0.7525, 0.0181], 49.7, 35.0, 165.7 0053.8+3114, GAUSSIAN, 00:53:49.51920000, +31.14.48.91200000, 8.7384, , , , [-0.8641], 43.4, 40.3, 32.8 0054.1+3203, POINT, 00:54:09.52080000, +32.03.43.99200000, 1.3, , , , , [-0.7] 0054.1+3101, POINT, 00:54:17.53920000, +31.01.59.41200000, 1.2422, , , , [-0.5142, -0.2463] 0054.2+3201, POINT, 00:54:17.53920000, +32.01.06.88800000, 3.44666, , , , [-0.6143] 0054.3+3353, POINT, 00:54:22.03920000, +33.53.36.09600000, 2.0607, , , , [-0.4791, -0.1043] 0054.6+3219, POINT, 00:54:41.88000000, +32.130.43.58400000, 1.1784, , , , [-0.6299, -0.1301] 0057.7+3021, GAUSSIAN, 00:57:46.60080000, +30.21.34.59600000, 4.25, , , , [-0.0435, -0.3402]

Phase calibration on the field

AST(RON

solve_phaseonly.parset

Strategy.InputColumn = CORRECTED_AMP # define input column Strategy.ChunkSize = 500 Strategy.Steps = [solve, correct]

Step.solve.Operation = SOLVE Step.solve.Model.Sources = [] #solves for all sources in skymodel Step.solve.Model.Cache.Enable = T Step.solve.Model.Phasors.Enable = T Step.solve.Model.Gain.Enable = T Step.solve.Model.Beam.Enable = T Step.solve.Model.Beam.UseChannelFreq = F Step.solve.Solve.Mode = COMPLEX #use COMPLEX not PHASE Step.solve.Solve.Parms = ["Gain:0:0:Phase:*", "Gain:1:1:Phase:*"] Step.solve.Solve.CellSize.Freq = 0Step.solve.Solve.CellSize.Time = 1Step.solve.Solve.CellChunkSize = 40 Step.solve.Solve.PropagateSolutions = F #don't use previous Step.solve.Solve.Options.MaxIter = 50 solution as starting guess Step.solve.Solve.Options.EpsValue = 1e-9 Step.solve.Solve.Options.EpsDerivative = 1e-9 Step.solve.Solve.Options.ColFactor = 1e-9 Step.solve.Solve.Options.LMFactor = 1.0 Step.solve.Solve.Options.BalancedEqs = F Step.solve.Solve.Options.UseSVD = T

Step.correct.Operation = CORRECT Step.correct.Model.Sources = [] Step.correct.Model.Phasors.Enable = T Step.correct.Model.Gain.Enable = T Step.correct.Model.Beam.Enable = T Step.correct.Model.Beam.UseChannelFreq = F Step.correct.Output.Column = CORRECTED_DATA

UseChannelFreq – this option needs to be set to True when using datasets where multiple subbands have been combined. (this corrects for how the beam changes with frequency).

Phase calibration on the field

Run BBS:

> calibrate-stand-alone -f target_averaged.MS/ solve_phaseonly.parset targetfield.skymodel > phasecal.log &

Inspect solutions:

> parmdbplot.py target_averaged.MS/instrument/ &

Inspect solutions

- And you're done! almost...
 - Inspect the data in plotms again to check the data has been properly calibrated

Time vs. amp – pre-calibration

Time vs. amp – post-calibration (check the amplitude scale has changed)

Amp vs. uvdist

Real vs. imag

19

Things to try next...

- Calibrate more subbands to use for the imaging tutorial (tomorrow)
- Try combined subbands prior to the phase calibration to see if that improves the quality of the solutions (more S/N is often needed for the phase calibration, particularly in fields with no dominate bright sources)