

Quick summary of tutorial data set

- * Seven sub-array pointings, frequency range 120.1 125.8 MHz
- * Hexagonal pattern centred at RA 21:00:00.00, Dec. +52:54:00.0 (Galactic Plane field)
- * Same fields as from a LOFAR 'radio sky monitor' programme (Transients KSP)
- * Calibrator Cygnus A
- * Dutch stations only

Tutorial can be downloaded here:

https://dl.dropboxusercontent.com/u/44848769/data_school_tutorial1_FINAL.pdf

Tutorial 1: flagging, averaging and demixing Jess Broderick (ASTRON)

Goal: to inspect a LOFAR HBA measurement set of a particular target field, and carry out some initial basic processing in preparation for calibration (Tutorial 2).

Note: in this tutorial, '>' is used to indicate a new input line in the terminal.

1. Login sheet

You should have already received one of these. Your username = lodsXX, your reservation = tutorials_287, and your node = lof00Z.

2. Log in to CEP3

- Log in to the LOFAR portal:
 > ssh lodsXX@portal.lofar.eu
- Log in to the head node, Ihd002:
 > ssh Ihd002

- Activate a dummy session using your reservation:
 - > use Slurm
 - > srun -A tutorials --reservation=tutorials_287 -N5 -u bash -i
- Now, open a new terminal (and keep the previous one open too), typing the following commands:
 - > ssh -Y lodsXX@portal.lofar.eu
 - > ssh -Y lhd002
 - > ssh -Y lof00Z
- Verify that graphics forwarding works:
 > geany
- To start with, we are just going to do some light processing. So let's go back to the head node:
 - > exit

3. Initial inspection of the data using msoverview

- The data sets for this tutorial can be found in Ihd002:/data/scratch/DATASCHOOL16/T1.
 Let's have a quick look at these data to get an idea about the sizes of the measurement sets, as well as the naming convention used.
 - > cd /data/scratch/DATASCHOOL16/T1
 - > du -sh *uv.MS

- The naming convention for each measurement set (also referred to as a sub-band) is Laaaaaa_SAPbbb_SBccc_uv.MS, where Laaaaaa is the observation/pipeline ID, SAPbbb is the sub-array pointing (beam), and SBccc is the sub-band number.
- What is the data volume per sub-band? In fact, there are 210 sub-bands for this observation (although we won't look at all of them in this tutorial): what is the total data volume then, and how does this compare with data from other telescopes that you may have used?
- The next step is to take a closer look at the data. To do this, we load a set of standard software packages:

> use Lofar

- Now we can, for example, obtain a summary of a measurement set using msoverview:
 > msoverview in=L456104_SAP000_SB001_uv.MS
- Which field was observed? What was the duration of the observation? What was the centre frequency of this particular sub-band? How many channels (frequencies) are in the data set? What array configuration was used and what does the configuration name imply?
- More detailed information in msoverview can be displayed using the 'verbose' argument:
 > msoverview in=L456104_SAP000_SB001_uv.MS verbose=T

What is the number of time slots? What is the integration time per time step? How many stations (core and remote), and how many baselines? What is the relation between number of stations and baselines (excluding autocorrelations)?
 Fourth LOFAR data processing school, September 2016, Tutorial 1

- You may have noticed the message 'This is a raw LOFAR MS (stored with LofarStMan)' in msoverview. This means that the data cannot be handled with Casa. Let's fix the problem. First, go back to your assigned compute node, and make a directory to do your work in.
 - > ssh -Y lof00Z
 - > cd /data/scratch
 - > mkdir lodsXX ; cd lodsXX
 - > mkdir T1 ; cd T1
 - > use Lofar

(note: we have to load the LOFAR packages again on this node)

Copy over sub-band SB001 to this directory:

> scp -r lhd002:/data/scratch/DATASCHOOL16/T1/L456104_SAP000_SB001_uv.MS .

 A simple **DPPP** (Default PreProcessing Pipeline) parset is required to make the data readable in Casa:

> geany DPPP-makecopy.parset # (or vim, emacs, nano, nedit etc.)

```
Put the following commands in the parset and save it:

msin=L456104_SAP000_SB001_uv.MS

msout=L456104_SAP000_SB001_uv_copy.MS

msin.autoweight=True

numthreads=4  # so that the nodes are not overloaded, usually can skip this line

steps = []
```

- Run **DPPP** on this parset: > DPPP DPPP-makecopy.parset
- The output measurement set can now be opened using the standard Casa tools. Moreover, proper weighting of the data has been implemented (see the LOFAR cookbook for more information).

4. casaplotms

- Let's take a look at the measurement set in casaplotms:
 - > use Casa # initialize CASA software
 - > casaplotms &
- Open the measurement set from the GUI. Plot the XX correlation only by using the 'corr' argument (to speed things up). Select only cross correlations by typing '*&*' in the 'antenna' field (note: * - any antenna; & - cross correlations).
- There are many large spikes, likely caused by RFI. Click on the 'Axes' tab and adjust the y-axis range to something more sensible to find the real astronomical signal (e.g. max. = 1e+08).
- Does the y-axis scale make sense to you? What other plotting options could be useful? Fourth LOFAR data processing school, September 2016, Tutorial 1

5. rfigui

 We can also further visualize the impact of RFI in the measurement set using **rfigui**.

> rfigui L456104_SAP000_SB001_uv_copy.MS &

- In the smaller menu that pops up, just choose 'Open'. Then, in the new window, select index 0 (default) for antenna 1, and index 1 for antenna 2, before pressing 'Load'. This will plot the short intra-station baseline CS001HBA0 - CS001HBA1.
- There is some clear narrow-band RFI. Create a power spectrum (under 'Plot').
- What could be causing the RFI? Are the fainter broadband structures at later times also RFI?
- rfigui can flag the data using AOFlagger: 'Actions'; 'Execute Strategy'. Also, find other useful plots in the plot menu.
- Would the plot look different if we had chosen e.g. a baseline between a core and remote station? Check this ('Go'; 'Go to...').

6. AOFlagger (Offringa et al. 2010, 2012a,b; http://aoflagger.sourceforge.net/)

- The AOFlagger can be called with DPPP. Create and run this parset (this time pipe the output to a log file, e.g. > DPPP your.parset | tee DPPP.log): msin=L456104_SAP000_SB001_uv_copy.MS msout=L456104_SAP000_SB001_uv_copy_fig.MS numthreads=4 steps=[preflagger,aoflagger] preflagger.baseline=*&&&;RS208HBA;RS210HBA;RS310HBA;RS406HBA;RS407HBA;RS409HBA; RS508HBA;RS509HBA;RS205HBA&RS307HBA # all these stations on one line
- An explanation of the 'preflagger' step is as follows. The first argument (arguments separated by semi-colons) removes the autocorrelations (although note that **AOFlagger** also does this by default). For the next eight arguments, we remove all baselines including the stated remote station (for calibration reasons related to Tutorial 2). The last argument removes one particular baseline between two remote stations, again for reasons related to calibration.
- The default AOFlagger strategy is run, but many options can be specified in DPPP (see cookbook as well as LOFAR wiki).
- Looking at the **DPPP** output, which channels were most affected? What are their frequencies?
- *Re-examine the data with casaplotms. Is the RFI gone now?* Fourth LOFAR data processing school, September 2016, Tutorial 1

7. Demixing

- The observation we are working on is close to two 'A-team' sources: about 16 deg from Cyg A, and 21 deg from Cas A. We need to check if their responses should be 'demixed' from the data. Firstly, let's check their elevations during the observation:
 - > use Cookbook # loading more software
 - > plot_Ateam_elevation.py L456104_SAP000_SB001_uv_copy_flg.MS
- We can predict the associated visibilities through simulations (see cookbook). Today, however, we will run a tool called the **Drawer**, allowing one to quickly inspect a measurement set and investigate which sources are contributing to the visibilities.

> scp -r lhd002:/data/scratch/DATASCHOOL16/T1/L456104_SAP000_SB001_uv_copy_demix_demo.MS .

> /home/tasse/drawMS/drawMS --ms=L456104_SAP000_SB001_uv_copy_demix_demo.MS

- Note that we are running the **Drawer** on pre-prepared averaged data (to save time); we will learn how to do averaging shortly. Examine the **Drawer** output. One can see contributions from Cas A and Cyg A. Time to demix!
- We need a model of the A-team sources:
 - > scp -r lhd002:/data/scratch/DATASCHOOL16/T1/Ateam.sourcedb.
 - > showsourcedb in=Ateam.sourcedb mode=patch # verify database contents

Fourth LOFAR data processing school, September 2016, Tutorial 1

Image plane

- Use the following parset for **DPPP**: msin=L456104 SAP000 SB001 uv copy flg.MS msout=L456104 SAP000 SB001 uv copy flg demix avg.MS numthreads=4 steps=[demix] demix.subtractsources=[CasA,CygA] demix.skymodel=Ateam.sourcedb demix.timestep=10 demix.freqstep=16 demix.demixtimestep=60 demix.demixfreqstep=64
- The arguments 'timestep' and 'freqstep' compress the data in time and frequency, respectively, by the given factors.
- Demixing two sources at once can be very time consuming. Thus, 'demixtimestep' and 'demixfreqstep' have been chosen to have rather coarse values (usually default to 'timestep' and 'freqstep' without needing to be specified).
- Run the **Drawer** again. Did we succeed in demixing Cyg A and Cas A from the data? > /home/tasse/drawMS/drawMS --ms=L456104_SAP000_SB001_uv_copy_flg_demix_avg.MS
- What is the size of the compressed, demixed measurement set? Is this what you expect?
- Do you think that the time and frequency averaging settings are reasonable? How could they affect the calibration and imaging? Fourth LOFAR data processing school, September 2016, Tutorial 1 9

8. Averaging and combining tasks in DPPP

- What if demixing is not needed? We can also just average in time and frequency. Here is a parset that could be run through DPPP: msin=L456104_SAP000_SB001_uv_copy_flg_MS msout=L456104_SAP000_SB001_uv_copy_flg_avg.MS numthreads=4 steps=[averager] averager.timestep=10 averager.freqstep=16
- DPPP was designed to run pipelines containing multiple steps. Save the following parset as 'DPPP-all.parset', in preparation for the final part of the tutorial. This parset combines all the steps we have run in this tutorial, except that we skip demixing (too time consuming). msin=L456104_SAP000_SB001_uv.MS msin.autoweight=true msout=L456104_SAP000_SB001_uv.MS.dppp numthreads=4 steps=[preflagger,aoflagger,averager] preflagger.baseline=*&&&;RS208HBA;RS210HBA;RS310HBA;RS406HBA;RS407HBA;RS409HBA; RS508HBA;RS509HBA;RS205HBA&RS307HBA averager.timestep=10 averager.freqstep=16

9. Scripting

- Clearly, it is impractical to do a manual reduction for a full observation of hundreds of subbands, although keep in mind that looking at your LOFAR data at least at some level is always highly recommended. Write a script (e.g. in Python or Bash) that will automate the process that we have just been through, applying it to the four sub-bands in the tutorial directory.
- Firstly, note that you can download target sub-bands to your directory using a command like this:

> scp -r lhd002:/data/scratch/DATASCHOOL16/T1/L456104_SAP000_SB000_uv.MS .

 Secondly, you can override keys in your parset from the previous slide by specifying them on the command line, e.g.:

> DPPP DPPP-all.parset msin=your.MS msout=your.MS.dppp

• A possible solution in bash:

#!/bin/bash

for inputname in \$(ssh Ihd002 'Is -d /data/scratch/DATASCHOOL16/T1/*uv.MS | xargs -n1 basename'); do echo "Copying \${inputname} from head node to working node" scp -r Ihd002:/data/scratch/DATASCHOOL16/T1/\${inputname} . outputname=\$(echo \${inputname} | sed "s/MS/MS.dppp/g") echo \${outputname} DPPP DPPP-all.parset msin=\${inputname} msout=\${outputname} echo "Removing raw data \${inputname} from working node" rm -rf \${inputname} done

After running your script, you should have four processed measurement sets (*.dppp).
 Use msoverview, casaplotms, etc. to verify that everything was processed successfully.

10. Final remarks

 This tutorial has given a brief overview of some of the initial processing steps for a LOFAR data set. It is highly recommended to also review chapters 2-4 in the cookbook, where more information can be found about the tools used in this tutorial, as well as other software that is available.

(http://www.astron.nl/radio-observatory/lofar/lofar-imaging-cookbook)

• Time permitting, you could, for example, try the following:

(i) Simulating visibilities to predict A-team contributions: section 2.3.3 in the cookbook. *Make sure to run any tests in a separate sub-directory on a dummy copy of the compressed data!*

(ii) Experimenting with **AOFlagger** settings: section 3 in the cookbook.

- Many/all of the steps in this tutorial can be carried out by the Radio Observatory as part of pre-processing. If in doubt about the best settings, always contact Science Support.
- Always make sure to look at (at least some of) your data!!

11. Extra slides / walkthrough

brodei	ick@lhd002:/data	/scratch	/DATASCHOOL16/T1\$	du -sh	*uv.MS

- 29G L456104_SAP000_SB000_uv.MS
- 29G L456104_SAP000_SB001_uv.MS
- 29G L456104_SAP000_SB002_uv.MS 29G L456104_SAP000_SB003_uv.MS

* Raw data volumes very large!
* Total data rate can be ~few GB/s when using full 96 MHz bandwidth.
* Data volume calculator at

http://lofar.astron.nl/service/pages/storageCalculator/calculate.jsp

34 CS101HBA0LOFAR	31.3 m	+006.52.51.7	+52.44.11.4	0.0058	-0.1524	6364567.1930	3825899.977000	461698.906000	5065	
39.205000										
35 CS101HBA1LOFAR	31.3 m	+006.52.49.9	+52.44.15.4	0.0055	-0.1514	6364566.8126	3825805.288000	461653.869000	5065	
	21 2 m	1006 52 45 2	152 42 40 0	0 0124	0 1577	6264560 7267	2026221 500000	462750 074000	5064	
19.620000	31.3 M	+000.55.45.2	+32.43.40.0	0.0134	-0.1377	0304309.7307	3820331.390000	402739.074000	3004	
37 CS103HBA1LOFAR	31.3 m	+006.53.50.1	+52.43.51.8	0.0141	-0.1570	6364569.4814	3826248.441000	462840.933000	5064	KS
74.634000										
38 CS201HBA0LOFAR	31.3 m	+006.52.55.0	+52.43.39.2	0.0062	-0.1600	6364571.2825	3826679.281000	461855.243000	5064	
41.380000										-
39 CS201HBA1LOFAR	31.3 m	+006.53.01.7	+52.43.38.1	0.0072	-0.1602	6364571.4109	3826690.821000	461982.139000	5064	(no)
21.249000	24.2	.006 50 07 4	. 52 42 42 4	0.0006	0.4662	6264574 0646	2027442 564000	464050 044000	5064	
40 CS301HBA0LUFAR	31.3 M	+000.52.07.4	+52.43.12.4	-0.0000	-0.1003	0304574.8040	382/442.504000	401050.814000	5004	cto.
41 CS301HBA1LOFAR	31.3 m	+006.52.00.7	+52.43.13.5	-0.0015	-0.1661	6364574.7517	3827431 025000	460923 919000	5064	SLa
62.521000	51.5 11	100015210017	152.15.15.5	0.0015	0.1001	050157117517	50274511025000	100923.919000	5001	
42 CS302HBA0LOFAR	31.3 m	+006.50.53.7	+52.42.57.6	-0.0111	-0.1698	6364585.8501	3827973.226000	459728.624000	5063	set
75.300000										
43 CS302HBA1LOFAR	31.3 m	+006.50.58.6	+52.43.00.6	-0.0104	-0.1691	6364585.5254	3827890.077000	459810.483000	5064	
30.313000	24.2		. 52 42 42 0	0.0000	0.4504	()(1570 1001	2026705 752000	460450 004000	5064	
44 CS401HBA0L0FAR	31.3 M	+006.51.24.1	+52.43.42.8	-0.0068	-0.1591	6364572.1931	3826795.752000	460158.894000	5064	HR
45 CS401HBA1LOFAR	31.3 m	+006.51.17.4	+52.43.43.9	-0.0077	-0.1589	6364572.1017	3826784.211000	460031 993000	5064	
29.062000	51.5 11			0.0011	0.1505	050157211017	56267647211000	100051.7750000	5001	100
46 CS501HBA0LOFAR	31.3 m	+006.51.57.9	+52.44.29.9	-0.0019	-0.1480	6364565.6054	3825568.820000	460647.620000	5065	ea
83.028000										
47 CS501HBA1LOFAR	31.3 m	+006.51.59.7	+52.44.25.8	-0.0017	-0.1489	6364565.9714	3825663.508000	460692.658000	5065	
07.883000	24.2			0.0500	0 1000	()(450(750)	2020205 500000	460440 50000	50604	
48 RS106HBALOFAR	31.3 M	+000.59.05.0	+52.41.21.0	0.0592	-0.1926	0304580.7503	3829205.598000	469142.533000	50621	
49 R5205HBALOFAR	31.3 m	+006.53.50.8	+52.40.17.6	0.0142	-0.2078	6364593.7597	3831479.670000	463487.529000	50609	
9.903000	5115 11			010112	0.2070	000100011001	50511171010000	1051011525000	50005	
50 RS208HBALOFAR	31.3 m	+006.55.10.4	+52.29.03.1	0.0256	-0.3676	6364664.3511	3847753.310000	466962.809000	50483	
7.244000										
51 RS210HBALOFAR	31.3 m	+006.52.29.2	+52.08.40.9	0.0025	-0.6573	6364795.2167	3877827.561860	467536.604956	50254	
5.584000	24.2		. 53 43 54 4	0.0500	0 4744	()(4504 4044	2020722 724000	454600 404000	50620	
52 R5305HBALOFAR	31.3 M	+000.40.21.4	+52.42.51.1	-0.0500	-0.1/14	0304581.4811	3828/32./21000	454692.421000	50038	
	313 m	+006 44 32 3	+52 42 18 5	-0 0656	-0 1791	6364585 6319	3829771 249000	452761 702000	50632	
3.181000	5115 11			010050	0.1/01	050150510515	502577112150000	1521011102000	50052	
54 RS307HBALOFAR	31.3 m	+006.40.54.8	+52.37.02.6	-0.0967	-0.2540	6364619.3796	3837964.520000	449627.261000	50573	(62*
7.585000										
55 RS310HBALOFAR	31.3 m	+006.08.21.3	+52.34.46.0	-0.3758	-0.2863	6364616.3511	3845376.290000	413616.564000	50547	
6.341000	24.2.5		. 53 40 50 6	0.000	0.0000	()(454) ((40)	2040424 020000	452020 260000	50740	
56 R5400HBALOFAR	31.3 M	+000.45.04.3	+52.49.59.0	-0.0010	-0.0098	0304542.0049	3818424.939000	452020.269000	50/18	
57 RS407HBALOFAR	51.5 M	+006.47.03.9	+52.54.25.1	-0.0439	-0.0069	6364499.3582	3811649.455000	453459.894000	50767	base
8.952000	51.5 H	1000.41.05.5	152.54.25.1	0.0455	0.0003	0304499.3302	5011049.455000	133133.031000	50101	
58 RS409HBALOFAR	31.3 m	+006.21.26.0	+52.47.41.8	-0.2637	-0.1025	6364547.8842	3824812.621000	426130.330000	50692	= 19
1.754000										
59 RS503HBALOFAR	31.3 m	+006.51.04.8	+52.45.33.2	-0.0095	-0.1330	6364557.2108	3824138.566000	459476.972000	50668	10
8.578000									50000	— I:
60 RS508HBALOFAR	31.3 M	+006.57.13.3	+53.03.21.7	0.0431	0.1202	6364441.8110	3797136.484000	463114.447000	50866	(
61 RS509HBALOEAR	31 3 m	+006 47 04 7	+53 13 30 1	-0.0438	0 2644	6364384 5199	3783537 525000	450130 064000	50978	(not
6.146000	51.5 1	1000.47.04.7	135.15.50.1	-0.0458	0.2044	0504504.5155	5105557.525000	450150.004000	50570	
										🛛 ın m
he MS is fully re <mark>uta</mark>	r, thus sui	able for B								
DFOWS=14042070 nt	imes=7190	nbands=1 nba	selines=1953							

CS – core station RS – remote station

(note: no international stations in this data set)

HBA 0/1 – core station 'ears'

(62*61)/2 cross-correlation baselines = 1891 = 1953-62 (note first station = no. 0 in **msoverview** output)

* Some of the verbose=T output from **msoverview**.

* Note that the same sized diameter for core/remote stations (i.e. 'INNER' for the remote station tiles).

broderick@lof012:/data/scratch/broderick/lofar_school/T1\$ DPPP DPPP-makecopy.parset copying info and subtables ... Finished preparing output MS R AST RON MSReader /data/scratch/broderick/lofar_school/T1/L456104_SAP000_SB001_uv.MS input MS: band 0 0 (0) startchan: nchan: (0) 64 ncorrelations: 4 nbaselines: 1953 ntimes: 7190 time interval: 1.00139 DATA column: DATA N.B. only do this once at this stage!! WEIGHT column: WEIGHT_SPECTRUM autoweight: Otherwise always = F (default) true 🔶 MSWriter msout. /data/scratch/broderick/lofar_school/T1/L456104_SAP000_SB001_uv_copy.MS output MS: nchan: 64 ncorrelations: 4 nbaselines: 1953 ntimes: 7190 time interval: 1.00139 DATA column: DATA WEIGHT column: WEIGHT SPECTRUM Processing 7190 time slots ... 0%....10....20....30....40....50....60....70....80....90....100% Finishing processing ... This simple parset also automatically NaN/infinite data flagged in reader removes clearly bad data if _____ necessary (not here, though). Percentage of flagged visibilities detected per correlation: [0,0,0,0] out of 898692480 visibilities [0%, 0%, 0%, 0%] 0 missing time slots were inserted Total NDPPP time 268.64 real 202.58 user 45.62 system 59.2% MSReader 40.8% MSWriter msout. Fourth LOFAR data processing school, September 2016, Jutorial 1

http://www.lofar.org/wiki/doku.php?id=public:user_software:ndppp

* DPPP.log on Tutorial slide 7 – 98% flagged is the max. because chan 0 already flagged by default. General RFI occupancy quite low (~few per cent).

* Core-remote baseline – extended emission from target field resolved out (cf. tutorial slide 6). But RFI remains in this case...

Table 1. Short list of allocated frequencies in The Netherlands in the range 10–250 MHz (source: Agentschap Telecom).

Service type	Frequency range(s) in MHz				
Time signal	10, 15, 20				
Air traffic	10-22, 118-137, 138-144				
Short-wave radio broadcasting	11–26				
Military, maritime, mobile	12-26, 27-61, 68-88, 138-179				
Amateur	14, 50–52, 144–146				
CB radio	27-28				
Modelling control	27-30, 35, 40-41				
Microphones	36-38, 173-175				
Radio astronomy	13, 26, 38, 150–153				
Baby monitor (portophone)	39-40				
Broadcasting	61-88				
Emergency	74, 169–170				
Air navigation	75, 108–118				
FM radio	87-108				
Satellites	137-138, 148-150				
Navigation	150				
Remote control	154				
T-DAB	174-230				
Intercom	202–209				

* Offringa et al. 2013, A&A, 549, A11 NOTE: Significant RFI from DAB intermodulation products above 150 MHz! See LOFAR technical webpages.

rfigui - also see http://www.astro.rug.nl/rfi-software/gui-tutorial.html

* The Drawer - http://www.lofar.org/wiki/lib/exe/fetch.php?media=commissioning:pres_drawer.pdf

* Demixing; usually default settings are fine. Look out for 'smart demixing' from LOFAR Cycle 8 onwards. Demixing paper: http://adsabs.harvard.edu/abs/2007ITSP...55.4497V (van der Tol et al. 2007)

* Worth putting in the time to make sure that you have some ideas of the possible effects of the A-team on your data (and also in terms of the processing / observing time ratio). In the LBA you demix both Cyg A and Cas A by default, because the antenna elements can see the whole sky accessible from the LOFAR site. In the HBA, simulations can really help, but you are very likely to need demixing if an A-team source is less than about 20 deg from your target.

* Be a little bit careful with demix ignoretarget = F/T. F is generally best (and the default). If in doubt contact Science Support.

* Data averaging: what are your science goals? How much bandwidth/time smearing can you tolerate? How often should you be solving for the gain phases? Do you need to transfer large amounts of data to an external cluster first?

Useful links:

http://adsabs.harvard.edu/abs/1999ASPC..180..371B (Bridle & Schwab 1999) http://adsabs.harvard.edu/abs/2015A%26A...582A.123H (Heald et al. 2015; LOFAR MSSS)

One recommendation is to keep the time resolution to 10s maximum after averaging, and the minimum number of channels to 4 per sub-band (and quite possibly 8). Native time/frequency resolutions for the actual observations are typically 1 or 2s, and 64 chans/sub-band.

plot_Ateam_elevation.py output

* Scripting – learning Python is a highly valuable skill!

* **Important**: <step>.type in **DPPP** - this defaults to the standard process name. But if you e.g. had custom step names like the following:

steps = [process1, process2, process3]

Then your parset needs extra lines such as process1.type=preflagger process2.type=aoflagger and so on.... See the LOFAR wiki for more information. And the example below.

broderick@lof012:/data/scratch/broderick/lofar_school/T1\$ more DPPP-all2.parset msin=L456104_SAP000_SB001_uv.MS msin.autoweight=true msout=L456104_SAP000_SB001_uv.MS.dppp steps=[lhee,dwingeloo,exloo] lhee.type=preflagger lhee.baseline=*&&&;RS208HBA;RS210HBA;RS310HBA;RS406HBA;RS407HBA;RS409HBA;RS508HBA;RS509HBA;RS205HBA&RS 307HBA dwingeloo.type=aoflagger exloo.type=averager exloo.timestep=10 exloo.freqstep=16

Not a surprise

that amplitudes

much higher on

short baselines:

Galactic Plane

field, extended

Redo plot after

emission.

calibration.

https://casa.nrao.edu/docs/taskref/plotms-task.html

PGPLOT Window 1

Can be much faster than casaplotms!

> uvplot.py -h > uvplot.py - L456104_SAP000_SB001_uv.MS.dppp -n 2

Time

Fourth LOFAR data processing school, September 2016, Tutorial 1

Time