LOFAR DATA SCHOOL 2016

<u>Tied-Array Imaging (II)</u>, with contributions from:

- **RRL** group
- **Scintillation (R. Fallows)**
- **Pulsar Working Group**
- **Radio Observatory**

Outline

- Tools
- **Calibration (Cyg A imaging)**
- **Beams**
- **Scientific examples**
 - total power spectroscopy
 - * scintillation
 - transients (e.g. pulsars)

J.B.R. Oonk (ASTRON/LEIDEN)

LOFAR Tied-Array Imaging

A) *Incoherent* addition of stations \rightarrow station voltages added w/o delays

 \rightarrow spectral resolution : identical to interferometry

 \rightarrow spatial resolution : station beam (FWHM ~ few degrees)

B) Coherent addition of stations \rightarrow station voltages added w. delays (single clock)

→ spectral resolution : identical to interferometry
→ spatial resolution : tied-array beam (TAB)
- 22 CS (LBA: 10', HBA: 3', HGH: 2')
- 6 CS (LBA: 1 deg, HBA: 20', HGH: 15')

Data output: HDF5 format (*.h5 = tab_header, *.raw = tab_data[t,f])

Phase information lost in addition, so why?

→ Total power measurements (large spatial scales)
→ High time resolution (<< 1s sampling)

note: complex voltage data dumps are possible, but not discussed here...

LOFAR Tied-Array Imaging: Covering large areas

* example 'Rings' (specify: TAB spacing and number of rings)

+14 6E+14 8E+14 1E+15 1.2E+15 1.4E+15 1.6E+15 1.8E+15 2E+15 3.8E+16 3.6E+16 3.4E+16 3.2E+16 3E+16 2.8E+16 2.6E+16 2.4E+16 2.2E+16

Tied-Array Imaging: Beams

- 1) Tile (HBA,HGH) / Dipole (LBA) beam
 - → tile beam (about 20 degrees)
 - → dipole beam ("all sky")

- 2) Station beam
 - → few degrees (see LOFAR website)

- 3) Tied-array (synthesized) beam (TAB)
 - \rightarrow depends on #stations included

Tied-Array Imaging: TAB beam rotation

(LBA: tracking Cyg A - sidelobes rotate)

LOFAR Tied-Array Imaging: Flux scales

Elevation dependent total flux (due to array projection, i.e. system gain)

LOFAR Tied-Array Imaging: Calibration

Calibration of TA data is similar to 'single dish' calibration

+14

1.2E+15

1.4E+15

1.8E+15

LOFAR Tied-Array Imaging

Tools: Reduction / Analysis of tied-array data

(incomplete summary)

- 1) RRL group (ask JBRO if interested in details)
 - dedicated python scripts: convert HDF5 to MS and apply LOFAR software
 - dedicated python/IDL scripts: analysis
- 2) Radio observatory / Scintillation (R. Fallows; ASTRON)
 - DAL (data access library)

http://www.lofar.org/wiki/doku.php?id=public:user_software:dal

- Dynamic spectrum toolkit

http://www.lofar.org/wiki/doku.php?id=public:user_software:dynspec

- 3) Pulsar Working group
 - LOFAR BF pulsar scripts (V. Kondratiev; ASTRON) https://github.com/vkond/LOFAR-BF-pulsar-scripts

LOFAR Tied-Array Imaging: Science

- 1) Radio recombination lines (RRL)
 - Total power imaging / spectroscopy
 - Detect and model RRLs to determine physical conditions of the CNM
- 2) Scintillation
 - Study dynamic spectra for signal propagation in turbulent media
 - Model properties of the ionosphere and the interplanetary medium
- 3) Transients and Pulsars
 - Find new transient phenomena (e.g. pulsars, FRB's, gravitational waves)
 - Study pulse profiles (pulsars models, gravity, (inter-)galatic medium).

RRL surveys: Why we need total power

* CRRL basic quantity is optical depth, diffuse MW provides natural screen

- only about 10-20% continuum recovered in interferometric HBA
- continuum scale (MW < 10 λ) is very different from gas scale (~arcmin)

Galactic TA CRRL Survey: (BG results - LC 0, 1)

LBA TA CRRL: BG Stability , Quality & Instrument noise

* Results from 4 observing runs: Instrume

Instrumental noise level 'constant'

Correlator Issue I: #channels vs. bandpass corrections

Bandpass: (now <u>solved</u>, do corrections at the observed channel resolution) <u>Project 1 (LBA 256chn)</u>:

Correlator Issue II: Residual bandpass has PPF ripple

Correlator Issue III: Time dependent, frequency gradients

* Bottom-right shows dynamic spectra (signal in freq vs time) for a single subband:

- signal has frequency gradient (bandpass) but its fluctuates rapidly in time
- likely instrumental (cycle 6) as this was not seen cycles 0,1 for LOFAR

Conclusions:

- 1. Tied-Array mode for LOFAR is used for,
 - total power imaging / spectroscopy
 - high time resolution
 - ... your science
- 2. Absolute flux calibration of TA data is possible,
 - high-cadence (or simultaneous) flux and off obsv.
 - apriori MW model or multiple calibrators
- 3. Some issues remain in the current data,
 - residual ppf waves in the bandpass
 - time dependent, frequency gradients

LDS 2016

1.2E+15 1.4E+15 1.6E+15

