

LOFAR Imaging tutorial
using WSClean

André Offringa

● We start from calibrated data (see previous tutorial)

Everyone should have several calibrated sub-bands.
NB: You should work on your own files: do not “share” measurement
sets during imaging – the imager might write to it.

● Topics:
– Making a quick dirty image - LOFAR primary beam

– Cleaning - Weighting, tapering

– Multi-scale - Wide bandwidth imaging

● Challenge:

Make an image that looks better or is scientifically more valuable than
mine.

We are going to use WSClean. A lot of help on WSClean is
available at the WSClean wiki:

https://sourceforge.net/p/wsclean/wiki/Home/

WSClean is installed on the CEP clusters. Make it available with
the following command:

 (note the capital)

Check which version you are running:

Get the WSClean command line help by running wsclean without
parameters:

Whenever you run WSClean in this tutorial, be sure to inspect
the output.

 $ use Wsclean

 $ wsclean --version

 $ wsclean |less

https://sourceforge.net/p/wsclean/wiki/Home/

A quick look at the data

A quick look is useful...
● ...to check if calibration went well
● ...to determine a reasonable size and scale for the

image

A quick look at the data
Pick a random sb and run wsclean as follows:

(Change the sb number to your random sb number)

Replace width and height by a number of pixels.

val is the image resolution, here specified in asec.

Determine good values for these for imaging this LOFAR set. You want to go
a bit beyond the first beam null. Note that angularwidth ≈ width x scale

● Note that <val> and “asec” have no space between them, e.g.: “-scale
2.5asec”

● Other units can be specified, e.g.: “6amin”, “50masec”, “0.1deg”
● In order to keep processing fast for the tutorial, don’t make images > 4k or

wider than 20 deg. This quick imaging should not take more than ~3 min.
● WSClean will always automatically perform appropriate w-correction

(i.e., corrections necessary for wide-field imaging)

 $ wsclean -size <width> <height> -scale <val>asec \
 -name quick L456106_SB010_uv.dppp.MS.flg.ph

A quick look at the data

 Example command:

This will output “quick-dirty.fits” and “quick-image.fits”.

Inspect these with your favourite fitsviewer
(e.g., kvis, ds9, casaviewer).

For kvis:

 $ wsclean -size 1400 1400 -scale 50sec \
 -name quick L456106_SB010_uv.dppp.MS.flg.ph

 $ use Karma
 $ kvis quick-*.fits

Quick imaging result

Cleaning

 $ wsclean -size <width> <height> -scale <val>asec \
 -niter <niter> -mgain 0.8 -threshold <flux> \
 -name clean L456106_SB010_uv.dppp.MS.flg.ph

 The main parameters for cleaning are:
 -niter <count> Turns cleaning on and sets max iterations.
 Normally, cleaning should end at the
 the threshold, not at the max iterations.

 -mgain <gain> How much flux of the peak is subtracted
 before a major iteration is restarted.
 Depends on how good your beam is.
 0.8 is safe, 0.9 almost always works and
 is faster.

 -threshold <flux> Set the apparent flux (in Jy) at which to stop.
 Should typically be 3 x sigma.

 Run the following command: (still on a single subband)

Cleaning

 $ wsclean -size 1400 1400 -scale 50asec \
 -niter 50000 -mgain 0.8 -threshold 0.1 \
 -name clean L456106_SB010_uv.dppp.MS.flg.ph

 Example command:

● It is convenient to store the above command in a shell script.
● Inspect all output .fits images – can you explain what is what?
● Notice in the output the cleaning process:

 == Cleaning (1) ==
Freed 222 image buffer(s).
Initial peak: 3.2568
Next major iteration at: 0.651359
Iteration 0: (602,465), 3.2568 Jy
[..]
Iteration 100: (731,561), 0.789584 Jy
Stopped on peak 0.646578
[..]
 == Cleaning (2) ==
[..]
Stopped on peak 0.130435
[..]
 == Cleaning (3) ==
Major iteration threshold reached global threshold of 0.1: final major iteration.
Iteration 2000: (545,542), 0.12621 Jy
Stopped on peak -0.0999906

Peak
flux

Reached
Threshold in
~2000 iters

Cleaning

 $ wsclean -size 1400 1400 -scale 50asec \
 -niter 50000 -mgain 0.8 -threshold 0.1 \
 -name clean L456106_SB010_uv.dppp.MS.flg.ph

 Example command:

clean-dirty.fits clean-image.fits

Apply LOFAR beam

 $ wsclean -size <width> <height> -scale <val>asec \
 -apply-primary-beam -use-differential-lofar-beam \
 -niter <niter> -mgain 0.8 -threshold <flux> \
 -name lofarbeam L456106_SB010_uv.dppp.MS.flg.ph

The LOFAR beam is applied by adding
-apply-primary-beam

Note that the beam was already applied on the phase centre
during calibration (the “applybeam” step in NDPPP). WSClean
needs to know this, otherwise it will use the wrong beam.

This is specified by also adding
-use-differential-lofar-beam

Repeat the previous imaging with the beam, similar to:

Inspect all the output images.

LOFAR primary beam correction

 $ wsclean -size 1400 1400 -scale 50asec \
 -apply-primary-beam -use-differential-lofar-beam \
 -niter 50000 -mgain 0.8 -threshold 0.1 \
 -name clean L456106_SB010_uv.dppp.MS.flg.ph

 Example command:

No beam applied: Differential beam applied:

Weighting and tapers

 $ wsclean -size <width> <height> -scale <val>asec \
 -trim <trimwidth> <trimheight> \
 -apply-primary-beam -use-differential-lofar-beam \
 -niter <niter> -mgain 0.8 -threshold <flux> \
 -weight [briggs <robustness> or natural] \
 -taper-gaussian <val>amin \
 -name clean L456106_SB010_uv.dppp.MS.flg.ph

Read the documentation for -weight, -taper-gaussian and
-trim, and optionally other weighting/tapering methods.

Repeat the previous imaging, but with settings for these
parameters that are useful to:
- accentuate the diffuse emission; and
- to make the beam Gaussian like, to measure the flux of the
emission more easily.

Correct for the primary beam as before.

Weighting & tapers

 $ wsclean -size 1800 1800 -scale 50asec \
 -trim 1400 1400 -weight briggs 0 \
 -niter 50000 -mgain 0.8 -threshold 0.1 \
 -name weighting L456106_SB010_uv.dppp.MS.flg.ph

 Example command:

With -weight briggs 0 With -weight briggs 0 and -gaussian-taper 2amin

Multi-scale clean
Note the negative areas around the
Diffuse sources.
Inspect the “model” image – how did
WSClean model the diffuse emission &
SNRs?

Repeat the previous imaging, but use
multiscale. If you feel adventurous, you
can play with -multiscale-scales and
-multiscale-scale-bias. However, for
LOFAR this is hardly ever necessary.

 $ wsclean -size <width> <height> -scale <val>asec \
 -trim <trimwidth> <trimheight> \
 -apply-primary-beam -use-differential-lofar-beam \
 -niter <niter> -mgain 0.8 -threshold <flux> \
 -weight [your weighting choice] \
 -taper-gaussian <val>amin \
 -multiscale \
 -name multiscale L456106_SB010_uv.dppp.MS.flg.ph

Baseline-dependent averaging
Note: WSClean version >=1.12a is required for baseline-dependent averaging, not 1.12
or earlier. It might not be available; check your version with wsclean --version
(maybe we can make it available for this tutorial).

Baseline-dependent averaging lowers the number of visibilities that
need to be gridded, which therefore speeds up the imaging.

To enable b.d. averaging, one adds “-baseline-averaging” to the
command line with the number of wavelengths (λs) that can be
averaged over. Use this rule:
 λs = max baseline in λs * 2pi * int. time in s / (24*60*60)
 (see https://sourceforge.net/p/wsclean/wiki/BaselineDependentAveraging/ for info)

Rerun the previous imaging with b.d. averaging. Turn beam
correction off. WSClean will initially fail with an error – solve the
error.

 $ wsclean -size <width> <height> -scale <val>asec \
 [..] \
 -baseline-averaging < sλ > \
 -name bdaveraging L456106_SB010_uv.dppp.MS.flg.ph

https://sourceforge.net/p/wsclean/wiki/BaselineDependentAveraging/

Baseline-dependent averaging

 $ wsclean -size 1800 1800 -scale 50asec \
 -trim 1400 1400 -weight briggs 0 \
 -multiscale \
 -niter 100000 -mgain 0.8 -threshold 0.15 \
 -baseline-averaging 2.0 -no-update-model-required \
 -name bdaveraging L456106_SB010_uv.dppp.MS.flg.ph

Example command:

Note in the output:

Try a second run with more averaging and inspect the difference
between the images. How much averaging is acceptable?

Note: primary beam correction does not yet work with baseline
averaging! Turn off primary beam correction.

[..]
Averaging factor for longest baseline: 1 x . For the shortest: 775 x
Reordering ../L456106_SB010_uv.dppp.MS.flg.ph into 1 x 1 parts.
Reordering: 0%....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%
Baseline averaging reduced the number of rows to 30.8%.
[..]

Multiple output channels & joining
Several approaches for combining all bands (i.e. MSes) :

● Run WSClean on each band and combine images afterwards
→ Only limited cleaning possible.

● Image all MSes in one run with WSClean
→ Clean deep, but assumes flux is constant over frequency.

● ...

 $ wsclean -size <width> <height> -scale <val>asec \
 [..] \
 -name fullbandwidth *.dppp.MS.flg.ph

This takes quite a lot of time. If you have time, you can run the command (but better
commands will be presented in the next slides). You can also run it with only a few
measurement sets. If you run clean on the full bandwidth, you can decrease the
threshold significantly, because the system noise will go down by sqrt(29).

Multiple output channels & joining
Several approaches for combining all bands (i.e. MSes) :

● Run WSClean on each band and combine images afterwards
→ Only limited cleaning possible.

● Image all MSes in one run with WSClean
→ Clean deep, but assumes flux is constant over frequency.

● Image all MSes and use multi-frequency deconvolution
→ Cleans deep & incorporates frequency dependency.
Relevant parameters: -channelsout <count> -joinchannels
-fit-spectral-pol <terms> -deconvolution-channels <count>.

Decrease the threshold to an appropriate level.

 $ wsclean -size <width> <height> -scale <val>asec \
 [..] \
 -channelsout <count> -joinchannels \
 -fit-spectral-pol <terms> \
 -deconvolution-channels <count> \
 -name mfclean *.dppp.MS.flg.ph

Multiple output channels & joining
Example command using multi-frequency deconvolution:

This takes ~two hours (or 1h with baseline averaging).

Analyse the individual output images and the MFS images.

 $ wsclean -size 1800 1800 -scale 50asec \
 -apply-primary-beam -use-differential-lofar-beam \
 -trim 1400 1400 -weight briggs 0 \
 -multiscale \
 -niter 100000 -mgain 0.8 -threshold 0.15 \
 -channelsout 14 -joinchannels -fit-spectral-pol 2 \
 -deconvolution-channels 4 \
 -name mfclean *.dppp.MS.flg.ph

Run source detection
The PyBDSM source detector can be used for self-calibration or
cataloguing:

Detect sources in your best output image:

 $ use LofIm
 $ pybdsm
PyBDSM version 1.8.7 (LOFAR revision 34639)
==
PyBDSM commands
 inp task : Set current task and list parameters
 [....]

BDSM [1]:

BDSM [1]: inp process_image
...
BDSM [2]: filename=”mfclean-MFS-image.fits”
BDSM [3]: interactive=True
BDSM [4]: output_opts=True
BDSM [5]: inp
...
BDSM [6]: go

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

