

# **RM-SYNTHESIS DEMO**

#### Marco Iacobelli (ASTRON)

#### LOFAR Data School, 21st Sept 2018





Netherlands Institute for Radio Astronomy

#### Overview

- Tutorial topics
  - General notes about RM-synthesis code
  - Input data preparation & inspection
  - Output data inspection
- Tutorial goals
  - Inspection of input/output data
  - Editing (both manual and automatic) of imaged data
  - Setup of an RM-synthesis run
  - Wide field imaging of data

### CEP3 login and usage

- 6 working nodes reserved: lof006 lof010 lof012 lof[015 016 017]
- 25 active user accounts: lods01...lods27
- 1 active reservation with id=lofar\_school2018\_114
- Work in couples!
  - Username=lodsXX | working node=lof0XX
  - Accounts from lods01 to lods05 => lof006
  - Accounts from lods06 to lods10 => lof010
  - Accounts from lods06 to lods10 => lof012
  - Accounts from lods11 to lods15 => lof015
  - Accounts from lods16 to lods20 => lof016
  - Accounts from lods21 to lods25 => lof017

Log in to the LOFAR portal: > ssh -Y lodsXX@portal.lofar.eu Log in to the head node: > ssh -Y lodsXX@lhdhead.offline..lofar Activate a dummy session using the reservation id and the your node: srun -A lofar\_school2018 -reservation=lofar\_school2018\_114 -N 1 w lof0XX -u bash -i

### CEP3 login and usage

- 6 working nodes reserved: lof006 lof010 lof012 lof[015 016 017]
- 25 active user accounts: lods01...lods27
- 1 active reservation with id=lofar\_school2018\_114
- Work in couples!
  - Username=lodsXX | working node=lof0XX
  - Accounts from lods01 to lods05 => lof006
  - Accounts from lods06 to lods10 => lof010
  - Accounts from lods06 to lods10 => lof012
  - Accounts from lods11 to lods15 => lof015
  - Accounts from lods16 to lods20 => lof016
  - Accounts from lods21 to lods25 => lof017

Now, open a new terminal tab (keep the previous one open too!) and type: > ssh -Y lodsXX@portal.lofar.eu

- > ssh -Y lodsXX@lhdhead.offline.lofar
- > ssh -Y lodsXX@lof0XX
- Verify that graphics forwarding works: > geany









#### Input data preparation: imaging

- See imaging lecture L9 and tutorial T4
  - Which Stokes parameters ? I Q U V
  - Which parameters ? Npix, cellsize, pol clean
  - Simplest way, a single parameter with no polarization cleaning

> wsclean -name 10\_deg\_SB221\_StokesU -size 1200 1200 scale 30asec -weight briggs 0.0 -pol U -niter 0 -threshold 0.005 mgain 0.8 -beamsize 165asec ../L123685\_SB221\_uv.DPPP. postionRMcorr

Cleaning is performed in sum over channels of Q\_ch^2 + U\_ch^2.
 When doing RM-synthesis, this is the most sensible option.

> wsclean -pol QU -join-polarizations -join-channels -squaredchannel-joining -channels-out 100 ...

## Input data preparation: inspection

- Flagging of bad maps
  - Removal of Q U maps with anomalous variance is an option
  - Which Stoke parameter refer the plots below ?
  - Why a non flat variance ?



- Weighting of maps
  - Assign a weight to each Q U maps based on the inverse of their variance is also an option

#### General notes about pyrmsynth code

- Several software tools available. In this tutorial we will use some of the main software tool developed for LOFAR and low frequency data processing
  - <u>https://github.com/mrbell/pyrmsynth</u> A package that performs fast RM Synthesis and RM CLEAN imaging while still providing the flexibility of a Python interface.
  - The code works on sets of FITS files.
  - Each FITS file contains images from a single sub-band, or some other subset of the observed frequencies.
  - As a default, the code assumes all Stokes parameters (IQUV) to be saved in one FITS file. However it can also handle separately saved Q and U FITS files.
  - Collect all FITS files in a directory so the software will read them all in, stack them into a single data cube, and perform RM synthesis along each line of sight.

## General notes about pyrmsynth code

- Command-line tool, input as a parset, output as feedback on screen.
- To source main software packages, type:
  - > module load lofar
  - Which packages you loaded ?
  - > python rmsynthesis.py rmsynth.parset

[iacobelli@lhd001]\$ python pyrmsynth.py -h Usage: rmsynth.py <input parameter file>

Options:

- --version show program's version number and exit
- -h, --help show this help message and exit
- -p, --plot\_rmsf Plot the RMSF as soon as it is computed.
- -V, --stokes\_v Produce a Stokes V cube after reading the fits files.
- -s, --separate\_stokes

Indicate that the Stokes Q and U input images are stored in separate FITS files.

- -f, --freq\_last Indicate that NAXIS4 is the frequency axis.
- -r, --rest\_freq Indicate that the frequency for an image is given in the RESTFREQ header keyword.

#### General notes about pyrmsynth code

|                                      | % parameter file for rmsynthesis python code                                                                                                                                                                                                                                                                                                                 |                                                   |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| <ul> <li>How to set it up</li> </ul> | % capable of running standard RM Synthesis as well as RM Clean<br>% Parameter file format:<br>% Comments can be added on their own lines, starting with a %, this must<br>% Parameters are given as keyword value pairs, with spaces as delimiters                                                                                                           | be followed by a space                            |
| Useful to focus on objects           | % ra and dec min and max of the subimage to process, given in pixels<br>% a value of -1 means to use the bound of the image<br>dec_min -1 %200<br>dec_max -1 %400<br>ra_min -1 %200<br>ra_max -1 %400                                                                                                                                                        |                                                   |
|                                      | % Define the phi axis, dphi in rad/m/m<br>phi_min -25 %-100<br>nphi 100 %200<br>dphi 0.25 %1                                                                                                                                                                                                                                                                 |                                                   |
| Useful to speed up runs              | % Mask file. Pixels with non-zero values in the image will be used for R<br>% Comment the following line out if you don't wish to use a mask<br>% Mask image must have the same number of pixels as the Stokes-Q and U i<br>% irrespective of the ra, dec min and max values. The mask file should b<br>% located in the input_dir<br>%imagemask ./mask.fits | M Synthesis<br>mages<br>e                         |
|                                      | % Clean parameters. gain is the loop gain, niter is the number of clean<br>% cutoff sets the value of the max of the residual image at which point<br>do_clean False<br>gain 0.1<br>niter 100<br>cutoff 0.0001                                                                                                                                               | iterations,<br>the procedure stops, defined in Jy |
| Useful to optimize S/N               | % weighting parameter. Give the name of the weight file (located in the<br>% If you leave it out, all channels will be given a weight of 1.0.<br>%do_weight weight.txt                                                                                                                                                                                       | input_dir).                                       |
|                                      | % spectral index option. Give directory or global average value. If want<br>% specify reference frequency.<br>% alpha 0<br>%ref_freq                                                                                                                                                                                                                         | ed,                                               |
|                                      | % Detection threshold on polarized intensity map<br>%threshold 0.1                                                                                                                                                                                                                                                                                           |                                                   |
|                                      | % output file<br>outputfn /data/scratch/iacobelli/M33_DATA_CSonly/RMSYNTHESIS/<br>% directory where the input fits file can be found<br>input_dir /data/scratch/iacobelli/M33_DATA_CSonly/RMSYNTHESIS                                                                                                                                                        |                                                   |

## Running RM-synthesis

- Data and scripts are in /home/iacobelli/RMDEMO so first make your working directory and enter it:
  - > cd /data/scratch/lodsXX
  - > python myrmsynth.py -p -s rmsynth.par
  - While running a few useful outputs are saved and displayed:
    - the maximum theoretical resolution
    - the maximum observable scale
    - the RMSF values and profile
    - How the frequency coverage affects the RMSF side lobes ?



### RM-synthesis: outputs inspection

- Data are in /home/iacobelli/RMDEMO
  - Make and access your working directory:
     > cd /data/scratch/lodsXX
  - To source fits viewer packages, type:
     > module load ds9 or
     > module load karma (for kvis)
  - First let us open the target Stokes I map:
     > ds9 GRG.fits



- Now let us check a fits cube to find the Faraday depth range selected in the experiment.
  - Check noise distributions; Gaussian for Q,U but not for PI: why ?
  - · Find the instrumental polarization component and quantify it
  - Find the GRG in both RA,DEC and FD

#### RM-synthesis: outputs inspection

- Data are in /home/iacobelli/RMDEMO
  - Make and access your working directory:
     > cd /data/scratch/lodsXX
  - To source fits viewer packages, type:
     > module load ds9 or
     > module load karma (for kvis)
  - Collapsing RM cubes allows to portrait the content of structures in both FD and PI.
     Let us open a map showing the peaks of PI:
     > ds9 \_polint.fits



- Now let us check a fits cube showing Galactic foreground . .
  - > ds9 \_di\_p.fits
  - Can you recognize how Stokes I looks like ?
  - Find the instrumental polarization component
  - Can you find any background polarized source ?

#### Marco Iacobelli – 5<sup>th</sup> LOFAR Data Processing School –21<sup>st</sup> Sept 2018



RadioNet has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562



LOFAR



Netherlands Institute for Radio Astronomy