

Introduction to Solar Observations with LOFAR

LOFAR DATASCHOOL 2018

PIETRO ZUCCA

Netherlands Institute For Radio Astronomy

OUTLINE

- Introduction
 - Interferometric
 - Tied-Array Beam
- Spatial Resolution
- Complex observing settings
 - Simultaneous Interferometric + Tied Array
 - Imaging + Faraday rotation + Scintillation
- Conclusions

AST(RON Interferometric mode

• the complex visibility, V(u,v), is the 2D Fourier transform of the brightness on the sky, T(x,y)

AST(RON Tied-Array beam mode

• A set of beams in an array around the Sun in order to recreate a micropixel map.

AST<mark>RON</mark>

Interferometric

- Spatial resolution and quality of the imaging
- Complex sources with multiple peaks

Tied-Array

- Limited spatial resolution (beam spacing and size)
- Localization of the radio source without clear shape of the source

AST<mark>RON</mark>

Tied-Array

- Time resolution (milliseconds)
- Advantage for quasi-relativistic beam propagation

Interferometric

- Limited time resolution (0.25 seconds)
- Not ideal for quasi-relativistic beam propagation

AST<mark>(</mark>RON

Interferometric example

AST<mark>RON</mark>

Morosan et al. 2014

Tied-Array Beam example

8

Tied-Array Beam example

Zucca et al. 2018

9

AST(RON LOFAR imaging of the solar coronal

LOFAR

AST(RON Spatial Resolution

11

AST(RON Spatial Resolution

12

AST(RON Spatial Resolution

AST<mark>(</mark>RON

LOFAR

14

Complex Observing Settings

- Simultaneous Tied-Array and Interferometric
- First tests on the Sun currently in Cycle 9
- First comparison on the methods

The Radio Sun

 Propagating exciter in a quasistatic atmosphere or expanding loops (CME):

• Characteristic shapes of the radio burst spectra:

Time (altitude)

GOES 13 XRS

Type III: 30 March 2018

- AR2703
- Location: S06W69
- X-ray flare: B2.1
- Radio Signatures: 80-20 MHz
- Time: 13:22-13:24 UT

20

30

40

50

60

70

80

12:28:48

Frequency (MHz)

13:55:12

14:24:00

14:52:48

13:26:24

12:57:36

Universal Time (hh:mm)

Stokes I & Stokes V Spectra Reteriands institute for Radio Astronomy

Temporal Profile of Type III Bursts

Interferometric Images of Type III bursts

Temporal Resolution: 160 ms Spectral Resolution: 195 kHz

AST(RON Netherlands Institute for Radio Astronomy

Height vs Plasma frequency

Degree of Circular Polarization

B field along Type III bursts

B field along Type III bursts

-4000

-2000

0

2000

4000

Y (arcsec)

rlands Institute for Radio Astronom

SolarMonitor.org

AST(RON

Complex Observing Settings

- Simultaneous Tied-Array and Interferometric
- First tests on the Sun currently in Cycle 9
- First comparison on the methods (they seem to be consistent)
- At the same time we can also observe Faraday Rotation from pulsars to estimate the B-field of CMEs (see Richard Fallows talk)

AST(RON CONCLUSIONS

- LOFAR can observe the Sun in interferometric and tied-array beam mode.
- Interferometric mode has advantages as it returns the real image of the radio sources (limitation for the time resolution; possibility to push the correlator to 0.1 seconds).
- Tied array beam has the advantage of the time resolution (both methods simultaneously are the optimal observing campaign).
- Up to 5 simultaneous observations including solar, pulsar FR and scintillation have been successfully tested.