Processing LOFAR VLBI data: the Long Baseline pipeline

Alexander Drabent (TLS Tautenburg) & Marco Iacobelli (ASTRON) 5th LOFAR Data School, 20th-21st Sept 2018

Overview

Tutorial topics

General notes about calibration strategy (see also L9 by LB) Pipeline workflow Diagnostic plots Long baseline imaging

Tutorial goals

Finding good (primary & secondary) calibrators Assessing data quality Calibrating and imaging long baseline uv-data

T7 part I

Tutorial topics

General notes about calibration strategy (see also L9 by LB) Pipeline workflow Diagnostic plots

Long baseline imaging

Tutorial goals **Finding good (primary) calibrators** Assessing data quality Calibrating and imaging long baseline uv-data

CEP3 login and use

6 working nodes reserved: lof006,lof010,lof012,lof015,lof016,lof017 25 active users accounts: lods01, . . ., lods25 1 active Slurm reservation with id=lofar_school2018_114

Work in couples!

Username=lodsXX | working node=lof01X Accounts from lods01 to lods05 => lof006 Accounts from lods06 to lods10 => lof012 Accounts from lods11 to lods15 => lof015 Accounts from lods16 to lods20 => lof016 **T7** Accounts from lods21 to lods25 => lof017 **T7**

General notes about the needed software

How to

```
Set up needed data & software on CEP3
> module load dysco lsmtool ; module unload lofar ; module load lofim
Configure parset and configuration files
```

Where

Parset and configuration files

> cp -f /home/iacobelli/T7/*.parset /data/scratch/<your wd>/

> cp -f /home/iacobelli/T7/*.cfg /data/scratch/<your wd>/

> geany data/scratch/<your wd>/long_baseline_pipeline.parset data/scratch/<your wd>/lb_pipeline.cfg &

Raw data

> cp -rf /data009/scratch/iacobelli/L665012_3C147raw/*.MS_dysco /data/scratch/<your wd>/DATA/

Pipeline and other scripts (=>/home/iacobelli/T7/)

General notes about the data

Calibrator 3c295 and target 3c147 scans the bandwidth is 120-187MHz the duration is 10min

Raw data inspection

data size is 656 GB . . multiple copies will take some time so . . typically, a long synthesis (i.e. duration ≥6 hours) observation consists of (at least) 243 sub-bands:

What is the MS size for a long synthesis observation ?

What is the total data volume ?

How does this compare with data from other (radio) telescopes ?

General notes about the data

Raw data inspection

to show details of the observation type:

> msoverview in=L665012_SAP000_SB000_uv.MS_dysco verbose=T

Note the message 'This is a raw LOFAR MS (stored with LofarStMan)'

i.e. the data cannot be handled with CASA software! (=> DPPP)

```
What array configuration was used and what it mean ?
What was the duration of the observation ?
Which field was observed ?
How many channels (frequencies) are in the data set ?
What was the centre frequency of this particular sub-band ?
What is the number of time slots ?
What is the integration time per time step ?
How many stations (core and remote), and how many baselines ?
What is the relation between number of stations and baselines (no autocorrelations) ?
```

General notes about the LB pipeline

How to

Configure parset and configuration files

PARAMETER SETUP ## SECTION 1: things that absolutely need to be configured ## global information ! base directory = input.output.working directory ## this is taken from the config file -- DO NOT CHANGE ! job directory = input.output.job_directory> ## this is taken from the config file -- DO NOT CHANGE ! long baseline pipeline dir = /home/iacobelli/long baseline pipeline ! prefactor dir = /home/iacobelli/tutorialprefactor ! losoto executable = /home/drabent/losoto/bin/losoto ## target data information = /data/scratch/iacobelli/L665012 3C147raw ! target input path ! target input pattern = L*dysco ## Prefactor solution information ! transfer amp clock sols store = /data/scratch/iacobelli/L665004 3C295 RESULTS ##/data/scratch/iacobelli/prefactor sols/cal values/ ## directory with amplitude and clock solutions of p ! amp sols basename = caldata transfer ! phase sol input path = /data/scratch/iacobelli/L665012 3C147results/ ## directory with measurement sets containing direction-independent phase solutions of the target field = {{ job directory }}/lotss catalogue.csv ! image cat = /data/scratch/iacobelli/delay calibrators.csv ! delay cat ! subtract cat = {{ job_directory }}/subtract_sources.csv ! do download = False ## Averaging parameters = 8 ## Calibrator time averaging: output should be 8 seconds ! cal shift avg timestep ! cal shift avg fregstep = 8 ## Calibrator freq averaging: output should be 2 channels per subband = 16 ## Target time averaging: output should be 16 seconds ! tgt shift avg timestep = 16 ## Target freq averaging: output should be 1 channel per subband ! tgt shift avg fregstep

Stations to flag ! flag baselines

= [] ## for HBA data before October 2015, should set to: [CS013HBA*]

General notes about the LB pipeline

How to

DEFAULT]
Iofarroot = /opt/cep/lofim/daily/Mon/lofar_build/install/gnucxxll_opt/
casaroot = /opt/cep/casacore/current
pyraproot = /opt/cep/lofar/external/wcslib
aoflaggerroot=/opt/cep/lofar/external/wcslib
aoflaggerroot=/opt/cep/lofar/external/wcslib
aoflaggerroot=/opt/cep/lofim/daily/Mon/lofar_build/install/gnucxxll_opt/lib64/python2.7/site-packages
runtime directory = /data/scratch/iacobelli/Pipeline_prefactor
recipe directories = [%(pythonpath)s/lofarpipe/recipes,/home/iacobelli/long_baseline_pipeline/,/home/iacobelli/tutorialprefactor/]
working directory = %(runtime_directory)s
task_files = [%(Iofarroot)s/share/pipeline/tasks.cfg]
[layout]
job directory = %(runtime_directory)s/(job_name)s

[cluster]
clusterdesc = /data/scratch/lb_tutorial/pipeline.clusterdesc

[deploy] engine_ppath = %(pythonpath)s:%(pyraproot)s/lib:/opt/cep/pythonlibs/lib/python/site-packages engine_lpath = %(lofarroot)s/lib:%(casaroot)s/lib:%(pyraproot)s/lib:%(hdf5root)s/lib:%(wcsroot)s/lib

[logging]

log_file = %(runtime_directory)s/%(job_name)s/logs/%(start_time)s/pipeline.log xml_stat_file = %(runtime_directory)s/%(job_name)s/logs/%(start_time)s/statistics.xml

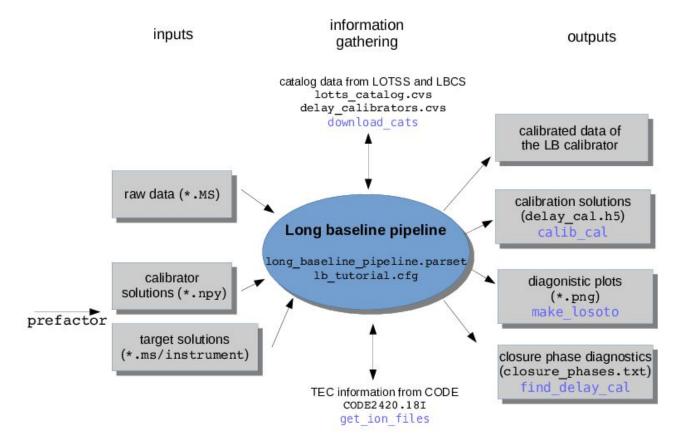
[feedback]

Method of providing feedback to LOFAR. # Valid options: # messagebus Send feedback and status using LCS/MessageBus # none Do NOT send feedback and status method = none

[remote] method = local max per node = 8

General notes about running the pipeline

How to run it


In a screen session (this will take a while ..)

> genericpipeline -d -c pipeline.cfg long_baseline_pipeline.parset

Performance up to 1st loop:

running time is 6.0 hrs data size increases of a factor 1.6 preparation section: 3hrs find_delay_cal: 0.5 hrs ndppp_apply_cal: 2.5 hrs Drabent & Iacobelli – Processing LOFAR VLBI data Tutorial – 5th LOFAR data school, 20-21 Sept 2018

General notes about the LB pipeline

LOFAR advanced processing strategies

State of art pipelines to automatically reduce and calibrate LOFAR data are now available (and in progress)

Pipeline for LOFAR LBA data* > <u>https://github.com/lofar-astron/PiLL</u> Pipelines for LOFAR HBA data:

Pre-Facet (i.e. DIE) calibration* > <u>https://github.com/lofar-astron/prefactor</u> Initial-Subtract imaging* > <u>https://github.com/lofar-astron/prefactor</u> Factor (i.e. DDE) calibration > <u>https://github.com/lofar-astron/factor</u> Long Baseline calibration* > . . . Coming soon !

PiLL: tool for producing low-noise, mid-resolution wide-field images Pre-Facet & Initial-Subtract: tools for producing moderate-noise, midresolution wide-field images

FACTOR: tool for producing low-noise, high-resolution wide-field images

LOFAR advanced processing strategies

Pipeline for LOFAR LB data > <u>https://github.com/Imorabit/Iong_baseline_pipeline</u>

a generic pipeline implementation of the LOFAR long baseline reduction pipeline

What is the pipeline doing?

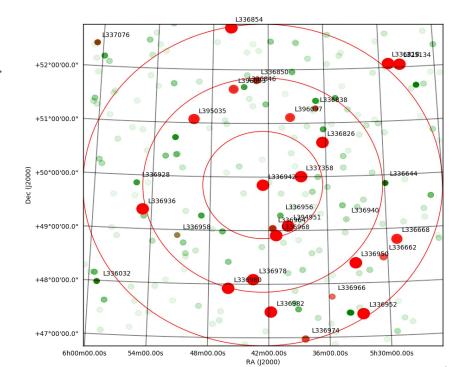
- 1. applying the prefactor solutions to the unaveraged data (1s,16ch/sb)
- 2. identify good delay calibrators ... via closure phases
- 3. begin the calibration with "best" calibrator

What is the pipeline doing?

1. applying the prefactor solutions to the unaveraged data (1s,16ch/sb)

Let us have a look at the prefactor solutions: (plots & h5 parm)

```
> python
>>> import h5py
>>> filename = 'instrument.h5imp_cal'
>>> data = h5py.File(filename, 'r')
>>> for key in data.keys(): print(key)
sol000
>>> data['sol000'].keys()
[u'RMextract', u'XYoffset', u'XYoffset_notimes', u'amplitude000', u'antenna',
u'bandpass', u'bandpass_notimes', u'clock', u'clock000', u'phase000', u'phase_offset000',
u'rotation000', u'source', u'tec000']
```


Tomorrow you will have a new h5 file as output of the pipeline: check the content . .

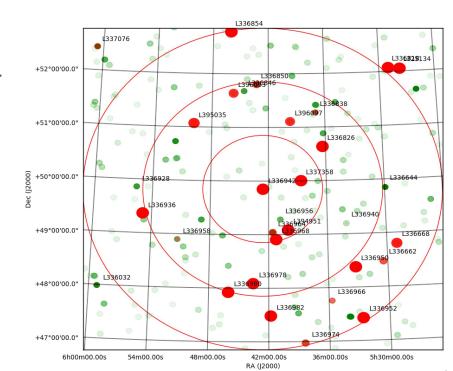
What is the pipeline doing?

2. Identify good delay calibrators . . . inspection of sources in the target field

> cp -f /data/scratch/LDS2018/lbcs_plot.py .
> python lbcs_plot.py 85.650575 49.852009

```
What do we see here?
To which lbcs source corresponds 3C147?
```

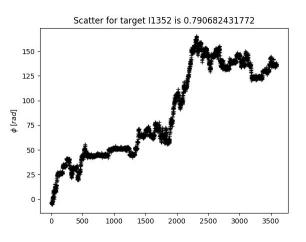

What is the pipeline doing?


2. Identify good delay calibrators . . . inspection of sources in the target field

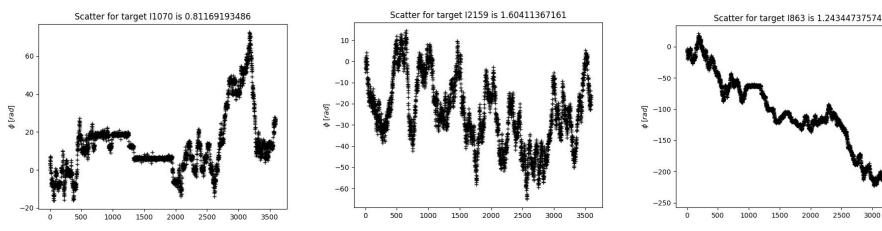
> cp -f /data/scratch/LDS2018/lbcs_plot.py .
> python lbcs plot.py 85.650575 49.852009

```
What do we see here?
To which lbcs source corresponds 3C147?
```

LBCS sources in the 3C147 field. LBCS sources are plotted larger & redder the more coherence is seen on the longer baselines. WENSS sources are plotted in green, with brighter sources in darker green. Note that a bright WENSS source is not necessarily a good long-baseline calibrator.


Plotting software is available on GitHub https://github.com/nealjackson/lofar-lb

What is the pipeline doing?


Identify good delay calibrators . . . 2. Closure phase plots for single calibrator sources !

What do we see here? Which is the best source ? Tomorrow check the pipeline output closure phase.txt

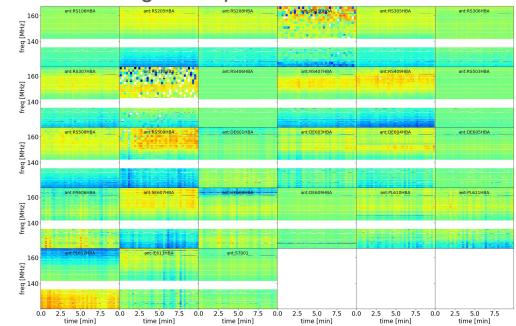
2500

3000

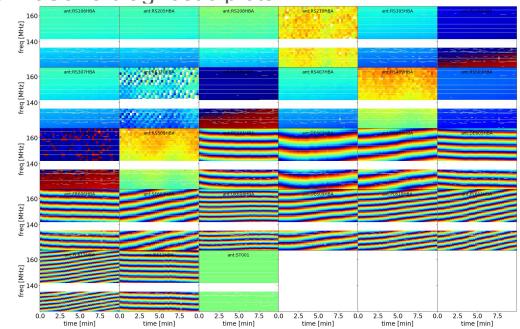
What is the pipeline doing?

3. begin the calibration with "best" calibrator inspection of Losoto diagnostic plots

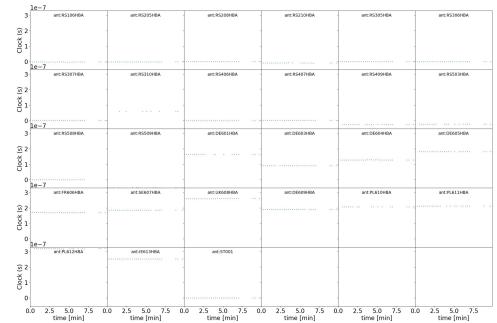
> display /your/job/directory/results/inspection/*.png

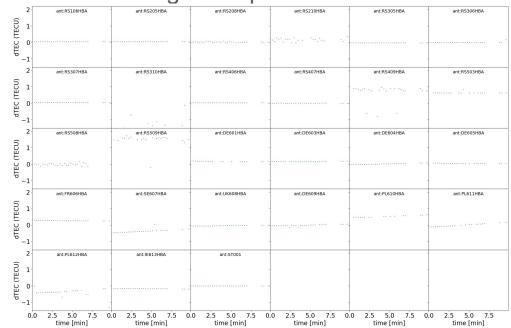

What do we see here?

What is the pipeline doing?


```
> display /your/job/directory/results/inspection/*.png
```

```
What do we see here (per station)?
    delay_cal_amp_polXX.png => amplitude solutions(XX polarization) in colorcode (time
vs. freq)
    delay_cal_ph_polXX.png => phase solutions(XX polarization) in colorcode (time vs.
freq)
    delay_cal_clock.png => clock offset (in seconds) with time
    delay_cal_tec.png => differential TEC (in TECU) with time
```


What is the pipeline doing?


What is the pipeline doing?

What is the pipeline doing?

What is the pipeline doing?

Useful online resources

The LOFAR documentation at

https://www.astron.nl/radio-observatory/lofar-documentation/resources/resources

The LOFAR imaging cookbook at

https://www.astron.nl/radio-observatory/lofar/lofar-imaging-cookbook

Software processing tools at

https://www.astron.nl/radio-observatory/lofar-data-processing/software-proces

sing-tools/software-processing-tools and https://github.com/lofar-astron

Drabent & Iacobelli – Processing LOFAR VLBI data Tutorial – 5th LOFAR data school, 20-21 Sept 2018

