
Prefactor tutorial

the data
The data for this tutorial come from a standard LOFAR surveys observation (i.e. an 8hr observation
of two target pointings with two simultaneous beams each with 48 MHz bandwidth, bookended by
two 10 min calibrator observations)
we will look at one beam and consider only a subset of the data (in the interest of processing times)
we will use one of the calibrator observations for the calibrration

The calibrator is 3C196 with obsid L232873
The target is field P23 with obsid L232875

The RO preprocessed data (i.e. that which can be retrieved from the LTA) can be found on CEP3 in

/data010/scratch/wwilliams/lds18_pft/data/L232873

containing 100 subbands from the calibrator (25GB) and

/data010/scratch/wwilliams/lds18_pft/data/L232875

containing 20 subbands from the target (228GB).

Parsets are available in

/home/williams/lds18/parsets

STEP 1: setup environment
This tutorial is written in bash (equivalents can be done in tcsh) to be run on CEP3.

make a directory for working in

> mkdir -p /data/scratch/<username>/pf_tutorial/
> cd /data/scratch/<username>/pf_tutorial/

make a directory for the pipeline to run in

> mkdir pipeline

make sure you load the required packages

> module load lsmtool
> module load lofar

prefactor, losoto and rmextract are available on CEP3 but are frequently updated, so we will use a
standard set of these packages which are located in /home/williams/lds18/git/.

for prefactor we use a version sourced from the master branch in the git repository (with one or two
minor changes). Instead of specifying these directly in the pipeline parsets, we will set some
environment variables (Note no trailing slashes)

> export PREFACTOR_PATH=/home/williams/lds18/git/prefactor-master/prefactor
> export LOSOTO_PATH=/home/williams/lds18/git/losoto
> export PYTHONPATH=/home/williams/lds18/git/losoto/lib/python2.7/site-

packages:${PYTHONPATH}

rmextract needs to be added to your PYTHONPATH

> export PYTHONPATH=/home/williams/lds18/git/RMextract/lib64/python2.7/site-
packages:${PYTHONPATH}

STEP 2: setup pipeline
the genericpipeline is part of the lofar installation. After having done

> module load lofar

you can find where the particular lofar installation you are using is located with the LOFARROOT
environment variable:

> echo $LOFARROOT
/opt/cep/lofar/lofar_versions/LOFAR-Release-
3_1_2/lofar_build/install/gnucxx11_opt

make a copy of the default pipeline config file
> cp $LOFARROOT/share/pipeline/pipeline.cfg .
> cat pipeline.cfg

[DEFAULT]
lofarroot = /opt/cep/lofar/lofar_versions/LOFAR-Release-
3_1_2/lofar_build/install/gnucxx11_opt
casaroot = /opt/cep/casacore/builds/casacore-2.3.0/build/gnucxx11_opt
pyraproot = /opt/cep/casacore/builds/python-casacore-2.1.2-2.3.0
hdf5root =
wcsroot =
aoflaggerroot=/opt/cep/aoflagger/aoflagger-2.10.0/build
pythonpath = /opt/cep/lofar/lofar_versions/LOFAR-Release-
3_1_2/lofar_build/install/gnucxx11_opt/lib64/python2.7/site-packages
runtime_directory = %(lofarroot)s/var/run/pipeline
recipe_directories = [%(pythonpath)s/lofarpipe/recipes]
working_directory = /data/scratch/lofarbuild
task_files = [%(lofarroot)s/share/pipeline/tasks.cfg]

[layout]
job_directory = %(runtime_directory)s/%(job_name)s

[cluster]
clusterdesc = %(lofarroot)s/share/cep2.clusterdesc

[deploy]
engine_ppath = %(pythonpath)s:%
(pyraproot)s/lib:/opt/cep/pythonlibs/lib/python/site-packages
engine_lpath = %(lofarroot)s/lib:%(casaroot)s/lib:%(pyraproot)s/lib:%
(hdf5root)s/lib:%(wcsroot)s/lib

[logging]
log_file = %(lofarroot)s/var/log/pipeline-%(job_name)s-%(start_time)s.log
xml_stat_file = %(lofarroot)s/var/log/pipeline-%(job_name)s-%(start_time)s-
statistics.xml

[feedback]
Method of providing feedback to LOFAR.
Valid options:
messagebus Send feedback and status using LCS/MessageBus
none Do NOT send feedback and status

method = messagebus

Some of these parameters don't really matter, but there are a few important things to change.

Since we are sharing CEP3 nodes we need to make sure that the pipeline restricts it's use of the cpus
available (in addition to settings in the pipeline parsets we will be using). Add the lines:

[remote]
method = local
max_per_node = 8

The method is local to work on a local/single machine (default). Other methods that can be used
when running on other clusters, e.g. pbs_ssh for multinode jobs using the torque system (provided
the data are accessible via a shared filesystem).

Change the feedback method to none

[feedback]
method = none

Add the prefactor recipes directory to the line

recipe_directories = [%
(pythonpath)s/lofarpipe/recipes,/home/williams/lds18/git/prefactor-
master/prefactor]

this allows the additional pipeline steps defined in the prefactor plugins directory to be used.

Set the working and runtime directories:

working_directory = /data/scratch/<username>/pf_tutorial/pipeline
runtime_directory = /data/scratch/<username>/pf_tutorial/pipeline

Note that these can be separate directories, if you like, but for simplicity let's keep them the same.
The working directory stores things like the pipeline logs (in a logs subdirectory) and the mapfiles
(in a mapfiles subdirectory) that are used to tell the pipeline where data is stored.

Also change the logging lines so they don't point to the lofarroot area where you can't write
anything...

[logging]
log_file = %(runtime_directory)s/%(job_name)s/logs/%(start_time)s/pipeline.log
xml_stat_file = %(runtime_directory)s/%(job_name)s/logs/%
(start_time)s/statistics.xml

STEP 3: run calibrator pipeline

Get a copy of the calibrator parset (this is a slightly modified version of the one in the prefactor
master branch):

> cp /home/williams/lds18/parsets/Pre-Facet-Calibrator-L232873.parset .

(Note that there are many interesting advances in the version3 branch for the calibrator parset that
are beyond the scope of this tutorial)

Then start the pipeline… and sit back have a coffee or write a paper (realistically though, check that
it starts off and doesn't crash and, for now, let's investigate what it is doing)

> genericpipeline.py Pre-Facet-Calibrator-L232873.parset -v -d -c pipeline.cfg

the -c pipeline.cfg allows you to specify the pipeline configuration file. Note that restarting the
pipeline with a different config file will lead to errors.

-v is for verbose output
-d is for debugging output

Run in this way the pipeline will produce a LOT of output in your terminal screen [run in
background, screen etc. …]

This will run for some time (~30 min on my test run). So in the meantime, let's have a look at what
exactly it is doing.

It will create a directory with same name as the parset you are running in your runtime and working
directories, so in this case it will create

/data010/scratch/wwilliams/pf_tutorial/pipeline/Pre-Facet-Calibrator-L232873

and subdirectories (in the working_dir)

parsets
logs
mapfiles
statefile

and later will populate dataproducts/ouputs (in the runtime_dir)

It will end with

2018-09-17 15:47:12 INFO genericpipeline: LOFAR Pipeline finished
succesfully.
2018-09-17 15:47:12 INFO genericpipeline: recipe genericpipeline completed

Inspect the results… in results/inspection

cal_phases_polXX.png
cal_phases_polYY.png
cal_amplitude_polXX.png
cal_amplitude_polYY.png
losoto_clock.png
losoto_tec.png
losoto_bandpasspolXX.png
losoto_bandpasspolYY.png
losoto_xyoffsetpolYY.png

The main final product of this pipeline is the h5parm file containing the calibrator solutions
in results/cal_values

instrument.h5imp_cal

STEP 4: run target pipeline

> cp /home/williams/lds18/parsets/Pre-Facet-Target-L2328735.parset .

A few changes have been made to the parset in the prefactor master branch to speed up the data
processing with some slight reduction in quality of calibration (in Ateam clipping, in the tgss

skymodel used and additional averaging)

Edit the cal_values_directory path to point to your results from the calibrator pipeline

! cal_values_directory =
/data/scratch/<username>/pf_tutorial/pipeline/Pre-Facet-Calibrator-
L232873/results/cal_values

And start the pipeline

> genericpipeline.py Pre-Facet-Target-L2328735.parset -v -d -c pipeline.cfg

This will run for quite some time (~3 hours on my test run).
[monitoring… results… processing times… should take about 3 hrs]

It will end with

2018-09-17 15:47:12 INFO genericpipeline: LOFAR Pipeline finished
succesfully.
2018-09-17 15:47:12 INFO genericpipeline: recipe genericpipeline completed

Inspect the results… in results/inspection

L232875_SB120_uv.dppp_124B2FCD4t_144MHz.msdpppconcat_structure.png
L232875_SB120_uv.dppp_124B2FCD4t_146MHz.msdpppconcat_structure.png
L232875_SB120_uv.dppp_124B2FCD4t_144MHz.msdpppconcat_phase.png
L232875_SB120_uv.dppp_124B2FCD4t_146MHz.msdpppconcat_phase.png

The main final products of this pipeline are the calibrated target bands… in results

L232875_SB120_uv.dppp_124B2FCD4t_144MHz.pre-cal.ms
L232875_SB120_uv.dppp_124B2FCD4t_146MHz.pre-cal.ms

STEP 5: make an image

The initial subtract parsets in prefactor can be used to prepare the data for FACTOR, which will
make some direction-independent calibrated images and prepare the required residual data. For now
though we will simply use wsclean to make an image of our calibrated Target field

> module load wsclean
> wsclean -size 4200 4480 -maxuv-l 7000 -baseline-averaging 6.72164158179
-local-rms-method rms-with-min -mgain 0.8 -auto-mask 3.3 -pol I -padding 1.4
-weighting-rank-filter 3 -auto-threshold 0.5 -j 8 -local-rms-window 50 -mem 20
-weight briggs 0.0 -name /data/scratch/<username>/pf_tutorial/P23-wsclean
-scale 0.00208 -threshold 0.0 -niter 50000 -no-update-model-required -reorder
-local-rms -fit-beam /data/scratch/<username>/pf_tutorial/pipeline/Pre-Facet-
Target-L232875/results/L232875_*.pre-cal.ms

This should take about 30 min.

Then open the image in ds9

> module load ds9
> ds9 -scale limits -0.01 0.1 /data/scratch/<username>/pf_tutorial/P23-
wsclean-image.fits

	the data
	STEP 1: setup environment
	STEP 2: setup pipeline
	STEP 3: run calibrator pipeline
	STEP 4: run target pipeline
	STEP 5: make an image

