Wide Field Imaging

Sebastiaan van der Tol

September 19, 2018

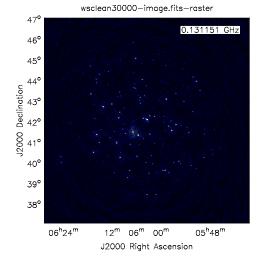
- Why Wide Field Imaging
- LOFAR imaging challenges
- Imaging fundamentals
- Algorithms

- Nice for surveys of course...,
- but what if you are interested in a single target?
- visibilities are the sum over the entire beam
- need WF imaging to achieve dynamic range

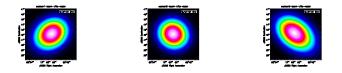
Imaging LOFAR data poses additional challenges

- Very wide fields of view
- Stations are fixed on the ground. Beam shape varies with time
- Ionosphere
- Wide frequency band
- Diffuse sources

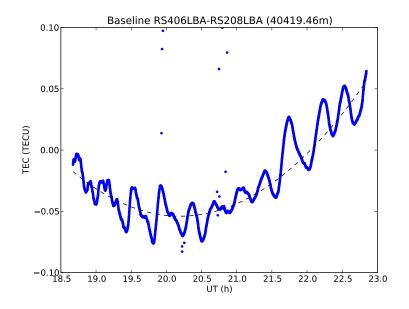
Wide Fields of View



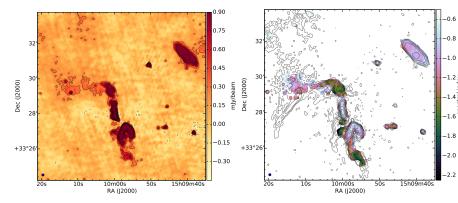
Varying beam shape



wsclean -interval 3000 3100 -size 3000 3000 -scale 12asec -use-idg -idg-mode hybrid -grid-with-beam -weight briggs 0 -make-psf-only /var/scratch/bvdtol/RX42_SB100-109.2ch10s.ms



Wide Frequency Band & Diffuse sources



"A plethora of diffuse steep spectrum radio sources in Abell 2034 revealed by LOFAR" by T. W. Shimwell et.al.

• Imaging as inversion problem

• Iterative solutions

• Gridding and degridding

The Measurement Equation

$$v = \int \int \exp 2\pi (ul + vm + nw) A(l, m) I(l, m)$$

The Measurement Equation can be written as a system of linear equations:

$$\mathbf{v} = \mathbf{A}\mathbf{i}$$

where \mathbf{v} are the visibilities, \mathbf{i} the source fluxes or pixel values, \mathbf{A} describes the relation between the two. Problem: what is \mathbf{i} given \mathbf{v} ? Generic solution:

$$\mathbf{i} = \left(\mathbf{A}^{\mathsf{H}} \mathbf{A}
ight)^{-1} \mathbf{A}^{\mathsf{H}} \mathbf{v}$$

Direct inversion of A^HA is not feasible.

Minimize sum of squared errors

$$\mathbf{i} = \arg\min_{\mathbf{i}} \|\mathbf{v} - \mathbf{A}\mathbf{i}\|^2$$

Find the best matching image, starting from an empty image, updating the image using the derivative

$$rac{\partial}{\partial \mathbf{i}} \| \mathbf{v} - \mathbf{A} \mathbf{i} \|^2 = \mathbf{A}^{\mathrm{H}} \left(\mathbf{v} - \mathbf{A} \mathbf{i}
ight)$$

The residual image is the derivative of the cost function.

- start with an empty model image
- Make a dirty (residual) image
- If threshold has been reached then stop
- find clean components and update the model image (psf -*i* Hessian)
- ompute model data
- **o** compute residual data and go to step 2

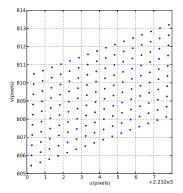
- Evaluation of products Ai and $\textbf{A}^{H}\textbf{v}$ is expensive.
- Equations resemble a Fourier transform.
- Fast Fourier Transform is efficient
- Need visibilities on a regular grid, but *u*, *v*, *w* coordinates are continuous.
- need to resample visibilities

Measurement Equation resembles a Fourier transform. An important property of the Fourier transform is the convolution theorem.

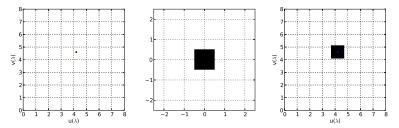
$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

$$\mathcal{F}(f \cdot g) = \mathcal{F}(f) * \mathcal{F}(g)$$

Track of a baseline in uv grid

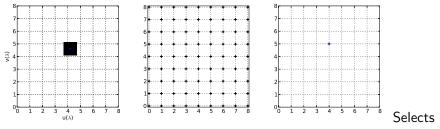


Convolution with 2D box function



The result overlaps with only a single (integer) grid point

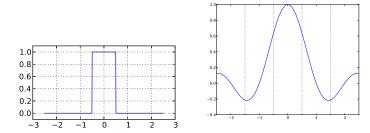
Multiplication by 2D Dirac comb function



only the value on integer grid points. The result is gridding on the nearest grid point.

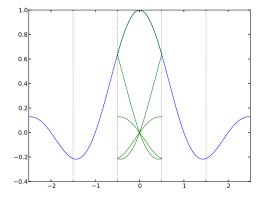
What effect has gridding in the image domain? (I)

Remember: convolution in the uv domain is a multiplication in the image domain

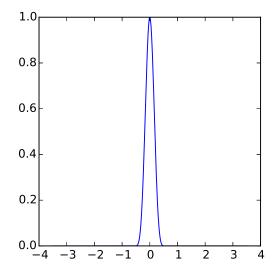


What effect has gridding in the image domain? (II)

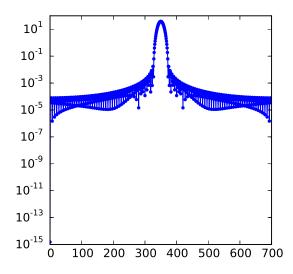
And multiplication in the uv domain is a convolution in the image domain

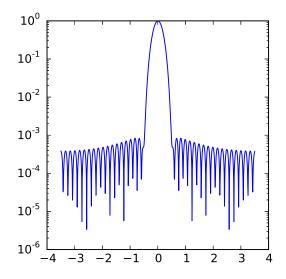


The Fourier transform of a comb function is again a comb. A convolution with a comb is a sum of shifted versions of the original. Aliases of sources outside the image will appear in the image.

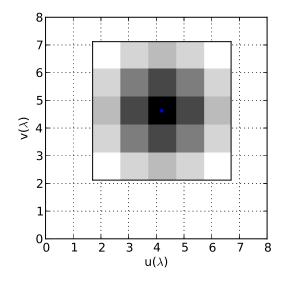


frametitleSpheroidal (II)





Spheroidal truncated in uv domain is still nice in image domain.



Including Image plane effects

Assumptions that allow us to use 2D FFT no longer hold for large images

W - term A - term

Solutions

- divide image in to smaller sub images or facets assumptions do hold for the facets pro
 - straight forward applications of existing tools
 - further averaging of visibilities

con

- edge effects
- piece wise constant, facets need to be small enough to approximate
- facets are not independent, need to cycle multiple times through facets
- Projection methods include correction in the gridding kernel (explained in the following slides) pro

Gridding the data with a convolution function applies the Fourier transform of that function in the image domain. We can make use of that to apply other corrections in the image domain.

- Tapering (Spheroidal)
- W term (Curvature of the sky)
- A term (Beam effects)

Consequence: need to compute many Convolution Functions

Correction for the W-term

 $\exp 2\pi nw$

where

$$n=1-\sqrt{l^2+m^2}$$

Support of the convolution function grows with the square of the angular size of the image.

(warning: shameless promotion of own work)

- Eliminates need to compute convolution kernels
- At the expense of doing more computations, sine-cosine evaluations
- Algorithm maps very well on Graphical Processing Units (GPU)
- Especially GPU with special function units to evaluate sine-cosine (Nvidia) (CEP4, dawn eor cluster)
- On GPU faster than classical gridding

Wide Band Deconvolution

Multi Scale Deconvolution

- Wide Field & Wide Band Imaging is essential to make deep images
- Very important to have good direction dependent calibration (Factor)
- The tools are there, different approaches, not everything is settled (faceting j-i projection, casa nterm j-i wsclean join-channels, deconvolution methods (multiscale, compressed sensing)
- Active development, expect improvements in the near future