AST (RON Netherlands Institute for Radio Astronomy

ONOSPHER EFFECTS

M. Mevius

6th LOFAR Data School

titute for Radio Astronomy

IONOSPHERE

What is the ionosphere and why do we care?

1950s formally defined as: "the part of the earth's upper atmosphere where ions and electrons are present in quantities sufficient to affect the propagation of radio waves"

Figure 6—Signals reflected by the E and F layers.

Encyclopedia Britannica

Electromagnetic spectrum

Electron density/ Total integrated electron density (TECU: 10^16 e-/m^2)

GPS data: online electron densitiy maps thin layer approximation

Image credits: A. Corstanje, F. Sweijen, C. Van Eck, P. Zuc

AST(RON

Variability

The ionosphere is highly dynamic: Ionization through solar radiation (UV+X-ray) Recombination at night

 \rightarrow diurnal pattern large gradients @ dusk and dawn Scintillation (high turbulence):(mostly) after sunset

Traveling lonospheric Disturbances (TIDs) **Small Scale Structures:** Kolmogorov turbulence

Structures moving with speeds ~ few 100 km/hr

When observing: tracking through the ionosphere

Solar cycle

AST(RON

Image credits: A. Corstanje, F. Sweijen, C. Van Eck, P. Zuc

Variability

Recombination at night

The ionosphere is highly dynamic:

Solar cycle

Structures moving with speeds

Wave like structures (TIDs) 06/14 2002

AST(RON Image credits: A. Corstanje, F. Sweijen, C. Van Eck, P. Zuc

Total integrated propagation delay

 $\Phi_{\text{ion}} = -\frac{2\pi\nu}{c} \int_{100}^{100} (n-1) \, \mathrm{d}l.$

Total integrated propagation delay

 $\Phi_{\rm ion} = -\frac{2\pi\nu}{c} \int_{\Gamma_0 S} (n-1) \, \mathrm{d}l.$

IONOSPHERIC EFFECTS

Calibration: Jones matrices

Other effects

Data School 6th LOFAR

Amplitude scintillation

Direction dependent effects

H----V

S

Lonsdale (2005)

Phase errors

Phase errors

interferometer measures phase differences:

- -ionospheric delay only visible if the excess path length is different for signal at different receivers
- –ionosphere is highly variable in space and time
- low frequency radio telescope sensitive to small ionospheric disturbances
 - with LOFAR HBA calibrator data we are able to measure ionospheric variations <0.001 TECU
 - orders of magnitude better than GPS
- -differential integrated TEC of 0.2 TECU \rightarrow
 - 1 full 2π rotation between 110-180 MHz (HBA)
 - 3.5 full 2π rotations between 40-80 MHz (LBA)

typical variation LOFAR (NL) 80 km: 0.5-1TECU within a single HBA beam: ~0.1 TECU

Clock/TEC separation (losoto tutorial this afternoon) DI calibration phases contain different phase effects

- @ LOFAR 2 dominant sources:
- drifting clock errors
- ionospheric phases

Start from selfcal phases over wide frequency range.

Fit for A(clock) and B(TEC) in:

 $\Delta \phi(v) = A \cdot 2\pi v + B \cdot 8.4479745 \cdot 10^9 / v$

For LBA <40MHz third order term is also important!

LOSOTO operation **CLOCKTEC**

second order effects are cable reflections, beam and source model errors

image creuits: A. Corstanje, r. Sweijen, C. van ECK, r. Zucca

School

Clock/TEC separation (losoto tutorial this afternoon)

Inspect your solutions

Image credits: A. Corstanje, F. Sweijen, C. Van Eck, P. Zucca

Position shifts

6th LOFAR Data School

Ger de Bruyn

School

Data

LOFAR

6th

Position shifts

Linear TEC gradient over array mimics geometrical delay

Effective position shift of source in image

 $\Delta \theta = C/v^2 \nabla \perp TEC$

Higher order TEC effects will distort the source in the image plane

7 HBA beam analysis 1minute snapshot

Calibration: Jones matrices

Appleton–Hartree equation (Taylor expansion)

School Data 6th LOFAR

School Data LOFAR **6th**

Faraday rotation

 $= RM_{\nu}^{-1}$

In the presence of a magnetic field: different refractive index for right and left circularly polarized waves phase shift between right and left circular components equivalently:

Rotation of linearly polarized components Rotation Measure (RM) defines rotation angle as function of frequency

, RM =
$$\frac{e^3}{8\pi^2\epsilon_0 m^2 c^3} \int_0^d n_e(s) B_{||}(s) ds$$

School Data OFAR 6th

Differential Faraday Rotation

Thin layer approximation: $RM_{iono} = TEC \cdot B_{||}$ **Different LOS:** dTEC and dB_{||} \rightarrow dRM

Rotation of the signal from XX,YY to XY,YX due to different Faraday rotation angles for different antennas

HBA: small rotation most of the time LBA: significant effect

Selfcal: either

- solve full polarization matrix
- diagonal gains + 1 rotation matrix
- convert to circular polarization: difference in R and L phases gives Faraday rotation angle

School

6th LOFAR Data

Faraday rotation (RMextract) **Polarized emission**

Time variability of ionospheric Faraday rotation causes depolarization

Model RM_{iono} by combining geomagnetic and ionospheric models

Execute: createRMh5parm.py – MSfiles < MS> -- h5parm < h5parm_file> Generates h5parm with "rotationmeasure" to be used with DPPP (ApplyCal) **Implemented in prefactor**

https://github.com/lofar-astron/RMextract

Install using option: --add-lofar-utils

WMM2010 Declination (min)

Thin layer approximation: RM_{iono} = **TEC**·B_{II}

AST(RON

Image credits: A. Corstanie, F. Sweijen, C. Van Eck.

Faraday rotation (RMextract)

School

Data

OFAR

6th

https://github.com/lofar-astron/RMextract **Install using option: --add-lofar-utils Execute:**

createRMh5parm.py – MSfiles < MS> -- h5parm < h5parm_file> Generates h5parm with "rotationmeasure" to be used with DPPP (ApplyCal) **Implemented in prefactor**

Thin layer approximation: RM_{iono} = TEC·B_{||}

Faraday rotation (RMextract)

Direct access to RM values (e.g for beamformed (pulsar) data)

RMextract/examples/example_getRM.py

- import RMextract.getRM as gt 1
- from astropy.time import Time

```
t = Time('2010-01-01T00:00', format='isot', scale ='utc')
   starttime = t.mjd*24*3600. # getRM still wants MJD time in seconds (casacore definition)
5
   endtime = starttime + 3600. # one hour of data
6
   statpos = [3826577.1095 ,461022.900196, 5064892.758] #LOFAR CS002LBA (center) , ITRF xyz in meters
   pointing=[ 2.15374123, 0.8415521 ] #3C196 Ra, Dec in radians
```

```
10
```

```
times=RMdict['times']
12
```

```
RM = RMdict['RM']['st1']
13
```

```
print ("TIME(mjd)
                   RM (rad/m^2)")
```

```
for tm,rm in zip(times,RM):
16
17
```

```
print ("%5.2f
                     %1.3f"%(tm/(3600*24.),rm))
```


Thin layer approximation More advanced models (using profiles) also available

3

9

11

14

15

RMdict = gt.getRM(ionexPath='./IONEXdata/', radec=pointing, timestep=100, timerange = [starttime, endtime], stat_positions=[statpos,])

Calibration Strategies Calibration strategies of the ionospheric distortions depends on

- your science goal
- In general:
 - dispersive delay requires high frequency resolution
 - -time variability requires high time resolution
 - TID timescales ~ 15 min
 - moving turbulence: smaller amplitude but faster variations spatial variability requires direction dependent calibration

 - -#of degrees of freedom
- In practice S/N can complicate above
 - -Calibrator phases cannot always directly be applied to target field due to spatial variations ASTRON

Conclusion

- Mainly phase effect
- Variations in time, frequency and space
- You need to choose your calibration strategy well
- Time, frequency solution interval
- Transfer of calibrator solutions not sufficient \rightarrow selfcal on target
- Rapid DD phase calibration necessary in many cases
- Polarised emission can be precorrected for ionospheric Faraday rotation using external data (RMextract)

• When doing radio astronomy @ low frequencies, you cannot ignore the ionosphere

