RADIO POLARIZATION MEASUREMENTS WITH LOFAR

Shane O'Sullivan (Dublin City University) shane.osullivan@dcu.ie

co-PI of Magnetism KSP, member of Surveys KSP

6th LOFAR data school

Astrophysics and Space Science Library

© 2018

Low Frequency Radio Astronomy and the LOFAR Observatory

Lectures from the Third LOFAR Data Processing School

Editors: Heald, George, McKean, John, Pizzo, Roberto (Eds.)

https://www.springer.com/gp/book/9783319234335

Part III Advanced Topics in LOFAR Data Processing

10	Polarization Imaging with LOFAR		159
	Michiel A. Brentjens		
	10.1	Introduction	159
	10.2	Polarized Electromagnetic Waves	160
	10.3	Stokes Parameters	161
	10.4	Stokes Visibilities	163
	10.5	Jones Matrices	165
	10.6	Faraday Rotation	167
	10.7	Ionosphere	171
	10.8	Antenna Beam Polarization	174
	10.9	Summary	177
	Refer	ences	178

Polarization with LOFAR

3

- What I <u>won't</u> talk about:
 - diffuse linear polarization (Galactic emission)
 - eg. Jelic+15, Van Eck+19, ...
 - circulation polarization
 - AGN jets: synchrotron, Faraday conversion
 - eg. O'Sullivan+13
 - stellar systems: coherent emission, highly (circularly) polarized
 - eg. Vedantham+20
 - pulsar polarization: linear & circular
 - eg. Gould & Lyne '98
- \Box What I <u>will</u> talk about:
 - Linear polarization from radio galaxies (synchrotron emission) and Faraday rotation
 - Just HBA, not LBA (yet...)

Why do we care about polarization?

- □ Because the Universe is magnetized
- Polarization observations provide insight to magnetic fields
 - eg. degree of order of the field in the emission region, can infer strength of magnetic fields in otherwise "invisible" thermal plasma through propagation effects (eg. Faraday rotation)
 - The origin and evolution of magnetic fields in the cosmic web are key open questions in astrophysics
- □ Within the Milky Way:
 - Interstellar medium, stars & planets, pulsars, star formation regions, ...
- □ Extragalactic:
 - AGN jets and lobes, fast radio bursts, the intergalactic medium, ...
- □ Cosmological:
 - Primordial magnetic fields, the cosmic web: voids, walls & filaments

Polarized SMBH "shadow" @ ~20 µas

ALMA 230 GHz

1300 light years

VLBA 43 GHz 0.25 light years

EHT collaboration papers: VII, VIII

EHT 230 GHz 0.0063 light years

Polarization of electromagnetic waves

Linear polarization

[image credit D. McConnell]

$$I = \langle E_{x}E_{x}^{*} \rangle + \langle E_{y}E_{y}^{*} \rangle \qquad (10.24)$$

$$Q = \langle E_{x}E_{x}^{*} \rangle - \langle E_{y}E_{y}^{*} \rangle \qquad (10.25)$$

$$U = \langle E_{x}E_{y}^{*} \rangle + \langle E_{y}E_{x}^{*} \rangle \qquad (10.26)$$

$$V = -i\left(\langle E_{x}E_{y}^{*} \rangle - \langle E_{y}E_{x}^{*} \rangle\right). \qquad (10.27)$$

cf. Chapter 10 of LOFAR book (slide 2)

Linear polarization flux density: $LP = \sqrt{Q^2 + U^2}$ Linear polarization angle: $\chi = \frac{1}{2} \tan^{-1}(U/Q)$ Circular polarization: CP = VLinear polarization vector: P = Q + iU $P = pe^{2i\chi}$

LOFAR polarized sources

□ Linearly polarised sources rare at low frequencies due to depolarization

- wavelength-independent depolarization (vector-average over source)
 - Excellent angular resolution of LOFAR helps mitigate this (6", 0.3")
- Faraday dispersion (wavelength-dependent depolarization)

$$\mathbf{P} = p_0 e^{2i(\chi_0 + \mathrm{RM}\,\lambda^2)} e^{-2\sigma_{\mathrm{RM}}^2\lambda^4}$$

- Require very small variations in RM across the extent of emission region within the synthesized beam
 - Low gas density environments
 - Compact emission region
- High angular resolution helps resolve large fluctuations in Faraday screen

LOFAR's competitive advantage

□ Why is measuring polarization important (at long wavelengths)?

- □ m-spectropolarimetry with LOFAR
 - eg. LOFAR Two-Metre Sky Survey (120 168 MHz @ 100 kHz)
 - High RM precision $(\Delta \lambda^2_{\text{LoTSS}} / \Delta \lambda^2_{\text{VLA}} > \sim 40)$
 - LoTSS (120 168 MHz): δφ ~ 1 rad/m² (20", 6", 0.3")
 - VLASS $(2 4 \text{ GHz}): \delta \phi \sim 200 \text{ rad}/\text{m}^2 (3")$
 - NVSS (~1.4 GHz): $\delta \phi \sim 700 \text{ rad/m}^2$ (60")
- □ A key science goal: probing the magnetisation of the cosmic web
 - LOFAR enables precision probes of the tenuous, weakly magnetised regions of the intergalactic medium ($n_e < 10^{-4} \text{ cm}^{-3}$, B < 100 nG)
 - e.g. O'Sullivan et al. (2020)
 - Help discriminate between competing models for origin of cosmic magnetism
 - ie. a primordial seed field scenario vs. outflows from galaxies/AGN

Faraday depth & RM synthesis

□ Here I've replaced RM with ϕ to denote the "Faraday depth" of different emission regions along the line of sight

$$\mathbf{P} = Q + iU = pIe^{2i\chi} = pIe^{2i(\chi_0 + \phi\lambda^2)}$$

- Divide by Stokes *I* to remove frequency dependence of synchrotron radiation.
- In reality, the net observable polarization is obtained by summing the polarized emission from all possible Faraday depths within the synthesized beam of the telescope:

$$oldsymbol{P}(\lambda^2) = \int_{-\infty}^{\infty} oldsymbol{F}(\phi) e^{2i\phi\lambda^2} d\phi \qquad \phi = 0.812 \int_L^{ ext{telescope}} n_e oldsymbol{B}. ext{d}oldsymbol{s}$$

- □ Where $\mathbf{F}(\phi)$, the Faraday dispersion function, specifies the distribution of polarized emission as a function of Faraday depth along the line of sight.
- □ We can then attempt to Fourier invert $\mathbf{P}(\lambda^2)$ to get $\mathbf{F}(\phi)$

Faraday depth & RM synthesis

$$oldsymbol{P}(\lambda^2) = \int_{-\infty}^{\infty} oldsymbol{F}(\phi) e^{2i\phi\lambda^2} d\phi$$

□ Example 1: A single polarized emission region (ϕ = RM)

- \square $|F(\phi)|$ is a delta-function
- $p(\lambda^2)$ is constant
- Linear $\chi(\lambda^2)$

Faraday depth & RM synthesis

Example 2: External Faraday Dispersion

$$oldsymbol{P}(\lambda^2) = \int_{-\infty}^\infty oldsymbol{F}(\phi) e^{2i\phi\lambda^2} d\phi$$

How to reconstruct $F(\phi)$?

- RM synthesis: Burn (1966); Brentjens & de Bruyn (2005)
- □ Take the Fourier transform of the complex polarization vector

$$\boldsymbol{P}(\lambda^2) = \int_{-\infty}^{\infty} \boldsymbol{F}(\phi) e^{2i\phi\lambda^2} d\phi \quad \Longrightarrow \quad \mathbf{F}(\phi) = \frac{1}{\pi} \int_{-\infty}^{\infty} \mathbf{P}(\lambda^2) e^{-2i\phi\lambda^2} d\lambda^2$$

□ But incomplete coverage in λ^2 -space leads to an approximate reconstruction.

$$\tilde{F}(\phi) = F(\phi) * R(\phi) = K \int_{-\infty}^{+\infty} \tilde{P}(\lambda^2) e^{-2i\phi\lambda^2} d\lambda^2$$
$$R(\phi) = K \int_{-\infty}^{+\infty} W(\lambda^2) e^{-2i\phi\lambda^2} d\lambda^2$$
$$K = \left(\int_{-\infty}^{+\infty} W(\lambda^2) d\lambda^2\right)^{-1}.$$

- □ $F(\phi)$ is convolved with $R(\phi)$ after Fourier filtering by the weight function $W(\lambda^2)$
- \square R(ϕ) is the rotation measure spread function (analogous to PSF)

RM Synthesis software links

- □ pyrmsynth
 - https://github.com/mrbell/pyrmsynth
- pyrmsynth_lite (optimised for LoTSS)
 <u>https://github.com/sabourke/pyrmsynth_lite</u>
- RM-synthesis
 <u>https://github.com/brentjens/rm-synthesis</u>
- □ RM-tools

https://github.com/CIRADA-Tools/RM-Tools

Polarization with LOFAR

- 18
- Prefactor data
 - Can already inspect the polarization properties (at low resolution), as long as RMextract step is done
 - Need direction-dependent calibration for high resolution imaging
- Need to image Q, U channels (eg. at 97.6 kHz intervals from 120 to 168 MHz for LoTSS data) and use RM synthesis to recover band-averaged polarized intensity and RM
- Widefield instrumental polarization a significant problem for LOFAR (and other telescopes)
 - □ leakage of a fraction of the Stokes I signal into Q, U (and V)
 - Calibration improvements needed
 - eg. updated beam models
- The wide (wavelength)² coverage capabilities of LOFAR helps in isolating this "leakage" signal from the real astrophysical signal
 narrow RMSF helps for sources with |RM| > a few rad/m²

Example LOFAR data:

LoTSS: 120 – 168 MHz @ 97.6 kHz

Instrumental polarization

- Example of imperfect polarization calibration, leading to leakage of a fraction of Stokes I (eg. 1%) into Stokes Q and U.
- Appears in Faraday depth spectrum around 0 rad/m², shifted a little due to ionosphere RM correction (RMextract)

Image credit: C. Van Eck

The LoTSS DR2 RM Grid

- Collaboration between SKSP and MKSP
- □ LoTSS DR2: 120 168 MHz, 20" QU cubes
 - $\sim 25\%$ of northern sky covered
- DR2: two main fields (841 pointings)
 - **•** The 0h and 13h fields, 5720 square degrees in total
 - □ ~4.5 million radio sources
 - Only ~2,500 polarized above $8\sigma_{QU}$
 - Excellent RM precision: O(0.1 rad/m²)

LoTSS DR2 RM Grid

End

□ QUestions?