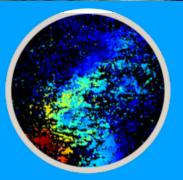


Processing beamformed data: Pulsar Pipeline (PulP)


Vlad Kondratiev (ASTRON)

6th LOFAR Data School

March 22-26, 2021

Outline:

- PulP overview
- In a nutshell about (de-)dispersion, folding
- PulP flowchart
 - → DSPSR pipeline
 - → PRESTO pipeline
- PulP output data
- Hands-on prerequisites

PulP overview

PulP is LOFAR **Pul**sar **P**ipeline for *known pulsars*. The essential goal of the PulP is to get the average profile of the pulsar(s) and provide a user with freq/time/phase/pol data cubes for further analysis. It is *not* the *search* pipeline, i.e. you can not do periodicity and single-pulse searches for a large range of dispersion measure trials. However, PulP can provide both PSRFITS/filterbank data and raw data converted to 8-bit for further searches.

PulP overview

PulP is LOFAR **Pul**sar **P**ipeline for *known pulsars*. The essential goal of the PulP is to get the average profile of the pulsar(s) and provide a user with freq/time/phase/pol data cubes for further analysis. It is *not* the *search* pipeline, i.e. you can not do periodicity and single-pulse searches for a large range of dispersion measure trials. However, PulP can provide both PSRFITS/filterbank data and raw data converted to 8-bit for further searches.

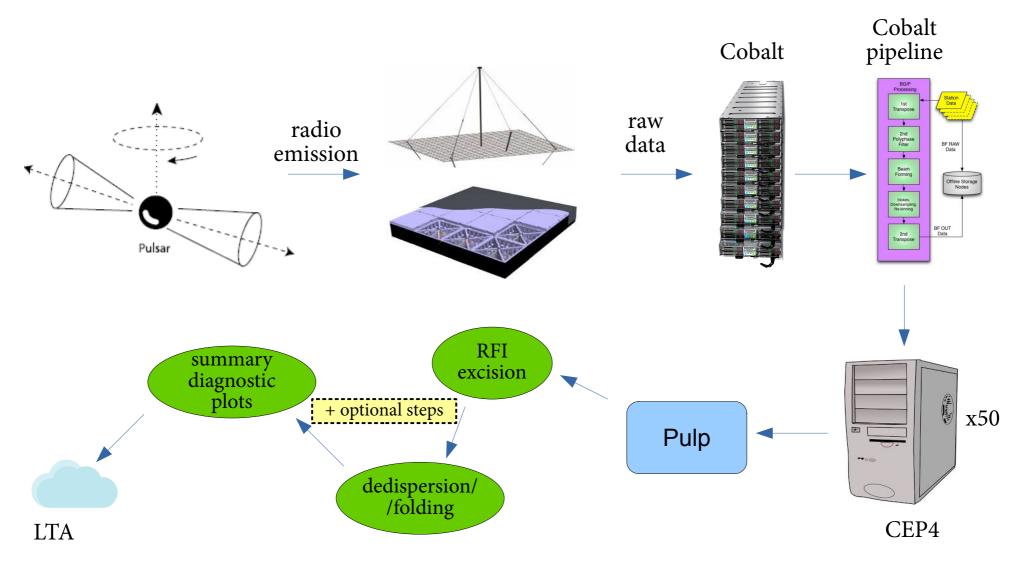
Bookkeeping, service functions

- → Logging
- → Cluster configuration/settings
- → User options
- → Where input data are?
- → Observing setup (HDF5 metadata / *parset*)
- → Coordination of processing data for different TABs/frequency parts
- → Feedback files for LTA ingest
- The actual data processing

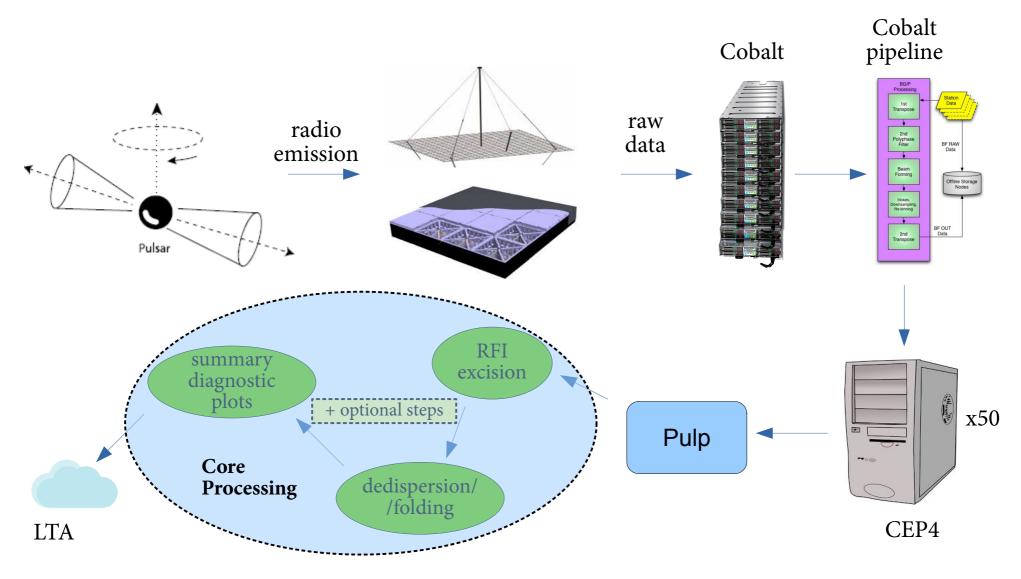
• Diagnostic summaries and pipeline output data products

PulP overview

PulP is LOFAR **Pul**sar **P**ipeline for *known pulsars*. The essential goal of the PulP is to get the average profile of the pulsar(s) and provide a user with freq/time/phase/pol data cubes for further analysis. It is *not* the *search* pipeline, i.e. you can not do periodicity and single-pulse searches for a large range of dispersion measure trials. However, PulP can provide both PSRFITS/filterbank data and raw data converted to 8-bit for further searches.

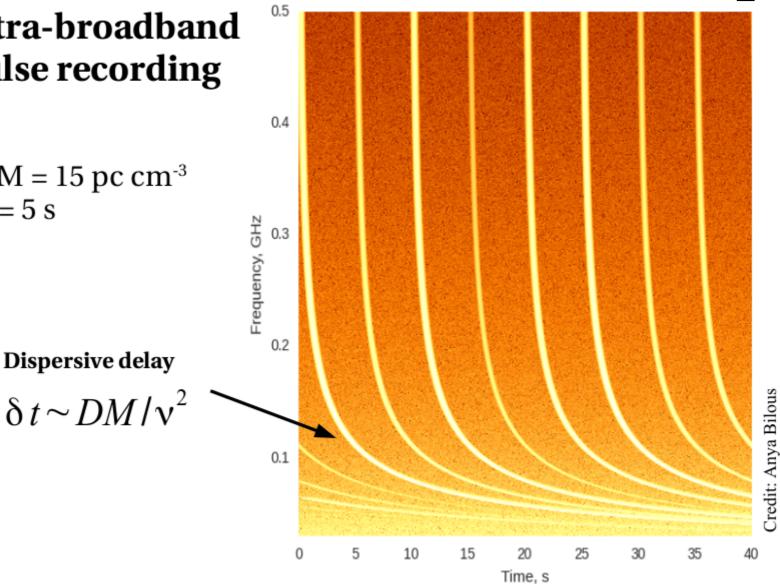

Bookkeeping, service functions

- → Logging
- → Cluster configuration/settings
- → User options
- → Where input data are?
- → Observing setup (HDF5 metadata / parset)
- → Coordination of processing data for different TABs/frequency parts
- → Feedback files for LTA ingest


• The actual data processing

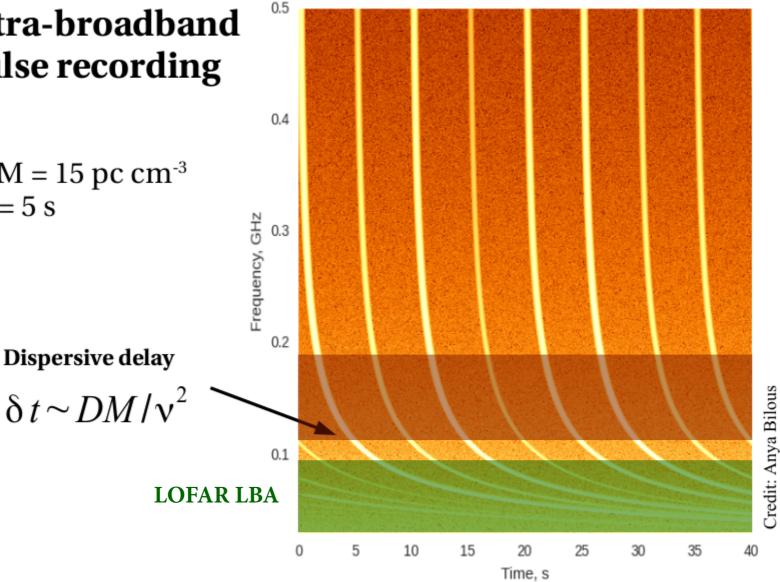
Diagnostic summaries and pipeline output data products

Data flow



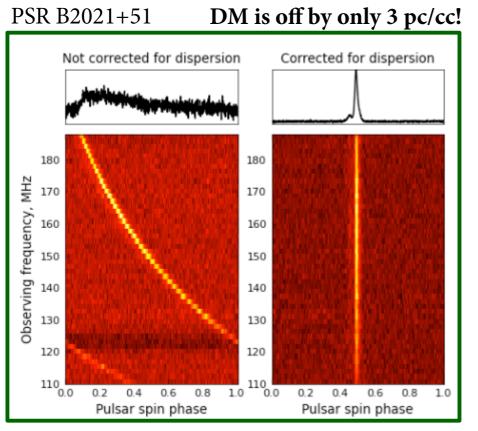
Data flow

Simulated ultra-broadband pulse recording

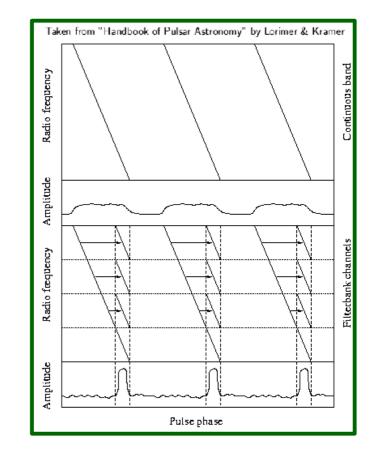

 $DM = 15 \text{ pc cm}^{-3}$ P = 5 s

Dispersion

Simulated ultra-broadband pulse recording


 $DM = 15 \text{ pc cm}^{-3}$ P = 5 s

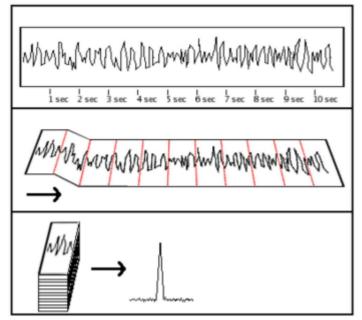
Dispersion

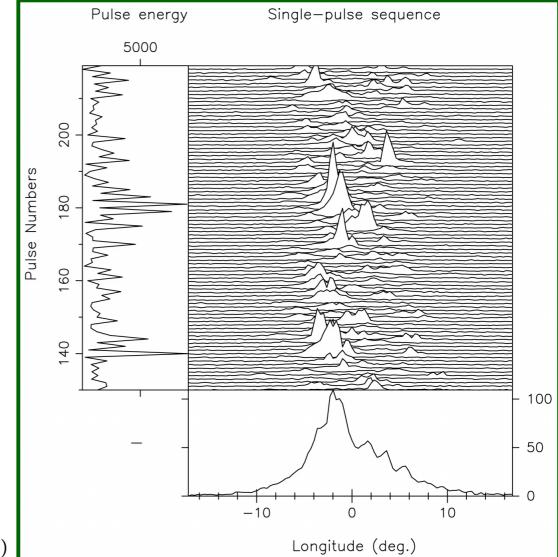


Dispersion

Credit: Anya Bilous

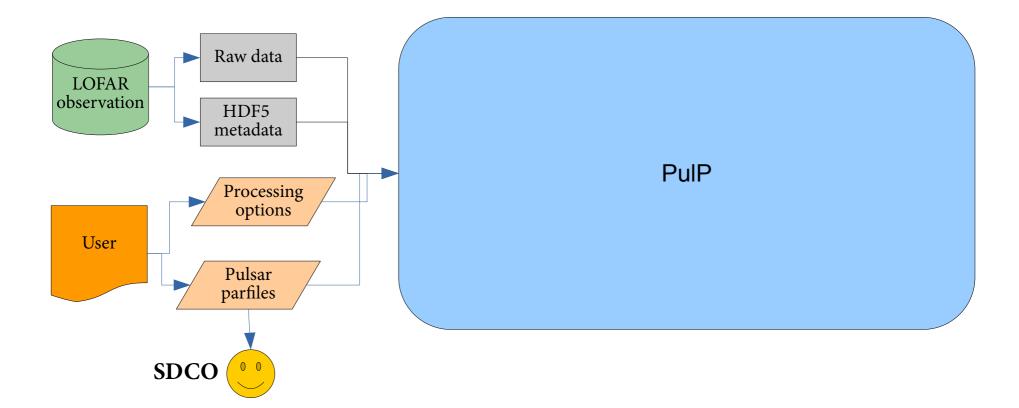
- DM [pc cm⁻³] measures the integrated column density of free electrons along the line of sight
 Can be corrected using (in)coherent dedispersion




- Incoherent dedispersion shifting channels in time
- Coherent dedispersion requires complex-voltage data and is more computationally expensive

Folding

PSR B0943+10



Deshpande & Rankin (1999)

PulP flowchart (1)

Parfiles: if parfiles are not given toPulP, then based on the target name it will try to find the corresponding pulsar in the ATNF catalog. If no pulsar is found in the catalog, PulP will look for the brightest pulsar in a given SAP and fold it.

Demo

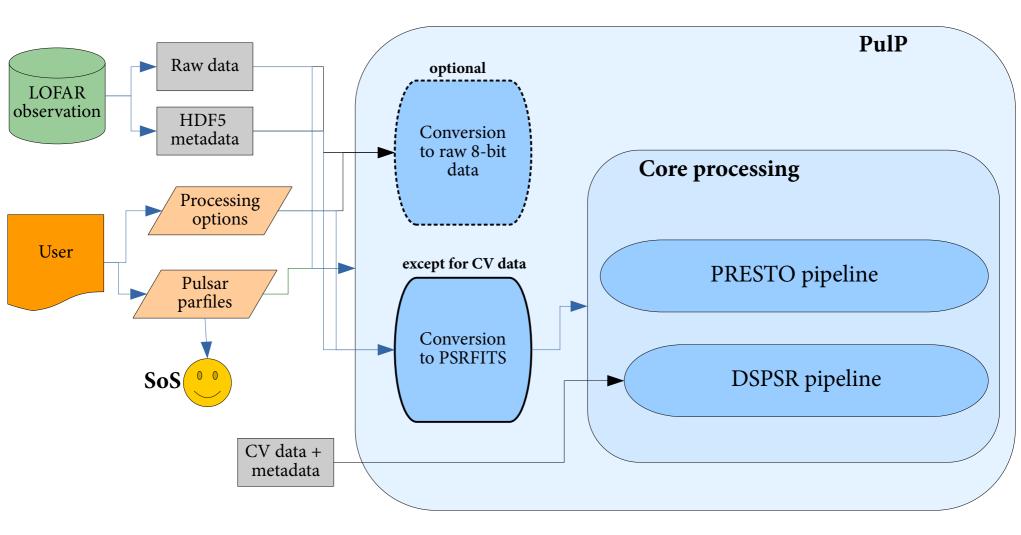
Pulsar ephemeris (parfiles)

PSRJ RAJ DECJ F0 F1 PEPOCH POSEPOCH DMEPOCH	J0034-0534 00:34:21.8320019 -05:34:36.81231 532.71342977772821597 -9.332463707303865163e-16 49550.037311801294202 49550.037311801294202 49550	1 1 1 1	0.00068844071120754594 0.02161483083208828989 0.00000002836577022925 4.9260591920158376476e-17
DM DM1	13.764894275846959064 0	1	0.00004430172861405973
PMRA PMDEC BINARY	8.0823671616462304792 -9.5157740417196312044 ELL1		0.13169130726699274092 0.30750778304651565920
PB	1.5892817926966151351	1	0.0000000792094121129
Al	1.4377774324431148653	1	0.00000359435416977026
TASC	49550.704855759820283	1	0.00003326831506895045
EPS1	6.4089927497823510916e-05	1	0.00000873904414835617
EPS2	-3.03855316458051531e-05	1	0.00001349161624088706
START	55959.632675467299123	1	
FINISH	56448.301487586140865	1	
TZRMJD	56190.012138005647902		
TZRFRQ	137.1519999999998681		
TZRSITE	t		
TRES	31.090		
EPHVER	5		
CLK	TT(TAI)		
MODE 1			
EPHEM	DE421		
NITS	1		
NTOA	218		
CHI2R	132.9672 207		

can be as simple as this:

PSR	J1706+35
RAJ	17:07:03.61
DECJ	+35:55:54.5
PO	0.159764851
Pl	0.0
PEPOCH	58244.04308936660
DM	19.240
EPHEM	DE405
CLK	UNCORR

Input raw data


- HDF5 format
- Header information (metadata) is stored in *_bf.h5 file
- The raw data itself is stored in *_*bf.raw* file

• This *.raw* file is linked from within *.h5* file and can be accessed directly via opened *.h5* file

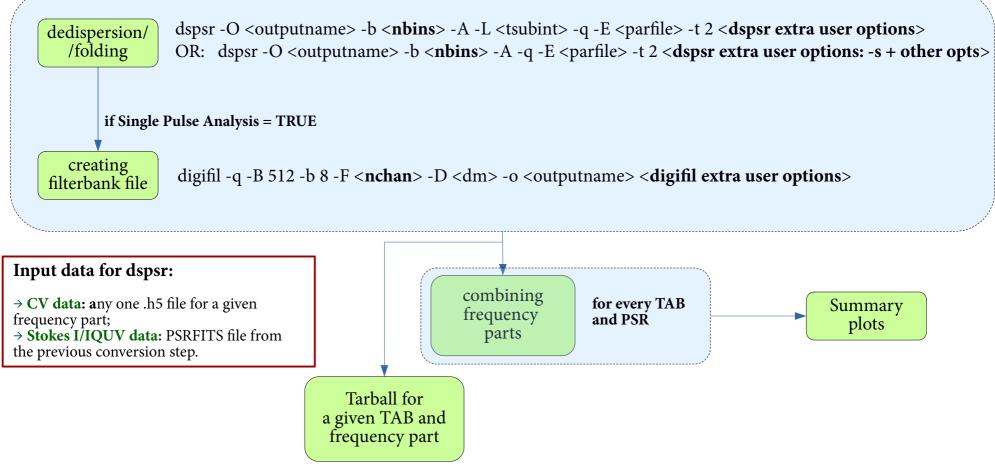
• Filename structure:

- > Lnnnnn_SAPxxx_Byyy_Sz_Pmmm_bf.h5
 - Lnnnnn LOFAR observation ID (ObsID)
 - xxx Sub-array pointing (SAP) number
 - yyy Tied-array beam (TAB) number
 - z Stokes parameter, can only take values 0,1,2,3
 - Stokes I observation have only S0 files
 - Stokes IQUV observation: S0 I, S1 Q, S2 U, S3 V
 - Complex-voltage data: S0 Xreal, S1 Ximag, S2 Yreal, S3 Yimag
 - mmm Frequency part, i.e. when every file has only fraction of subbands

PulP flowchart (2)

Data conversion

- Conversion to raw 8-bit data (optional)
 - → digitize.py
 - → written by Marten van Kerkwijk
 - → available at:

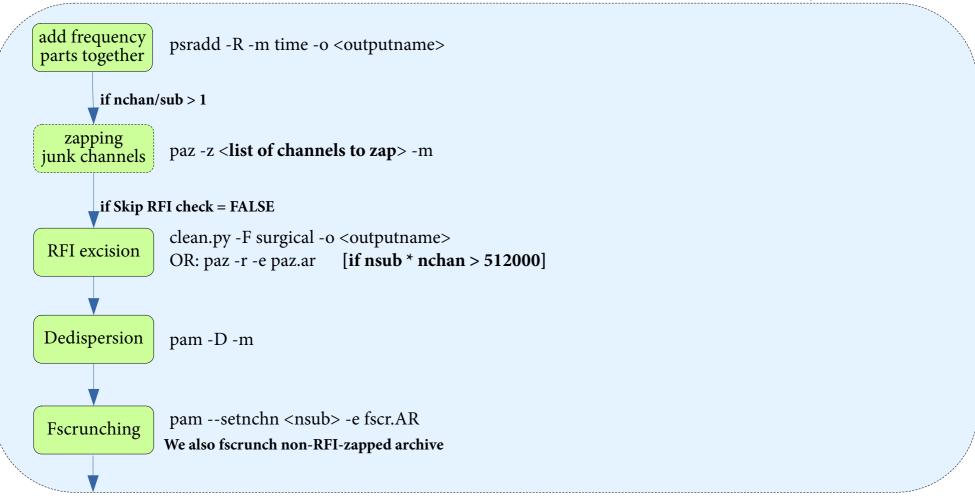

https://github.com/mhvk/scintellometry/blob/master/scintellometry/lofar/digitize.py

→ digitize.py -s 5 -o <output dir> <input .h5>

- Conversion from raw 32-bit data to PSRFITS (for non-CV data)
 - → custom-made program *2bf2fits*
 - → written by Tom Hassall, Patrick Weltevrede, with contribution from Vlad Kondratiev
 - → currently available at LOFAR Users Software Repository
 - → will make it available at Github as well
 - → does not save scales/offsets in PSRFITS
 - → needs major revisiting...
 - → Command example (very detailed input):
 - 2bf2fits -CS -H -append -nbits 8 -A 100 -sigma 3 -nsubs 400 -sap 0 -tab 0 -stokes 0 -o L667444_SAP0_BEAM0 -nsamples 24 -nchans 16 -ra 2.15980858832 -dec 1.30000703891 -psr B0809+74 -clock 200 -band HBA_110_190 -startdate 2018-09-12 -starttime 20:17:00.000000000 -samptime 0.0104858 -duration 299.977 -subs 54..453 -obsid L667444 -observer Pizzo /data/projects/PipelineTests/L667444/cs/L667444_SAP000_B000_S0_P000_bf.raw

DSPSR Pipeline (1)

for every TAB, PSR, and frequency part



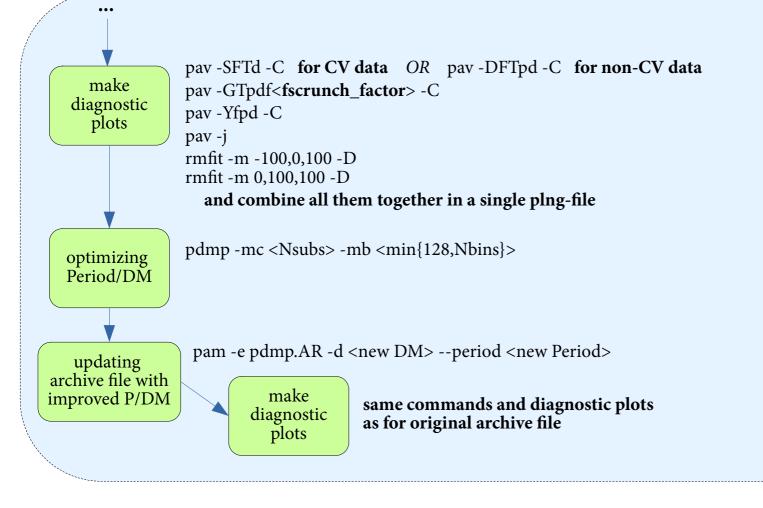
<nbins> - calculated automatically based on the sampling time and F0/P0 from the parfile. Maximum possible <nbins>=1024

<nchan> - number of channels in a given frequency part. If number of channels = 1, then <nchan>=2

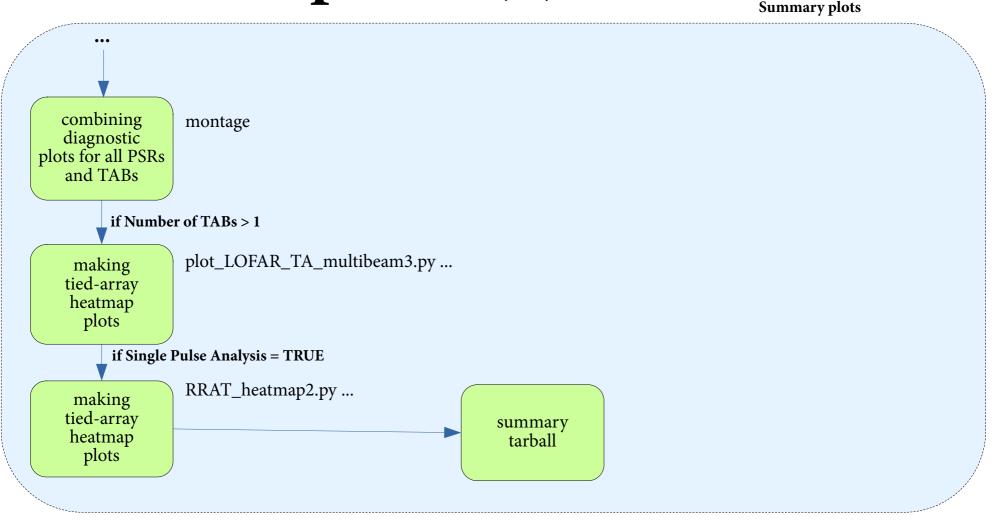
DSPSR Pipeline (2)

combining frequency parts; for every TAB, PSR

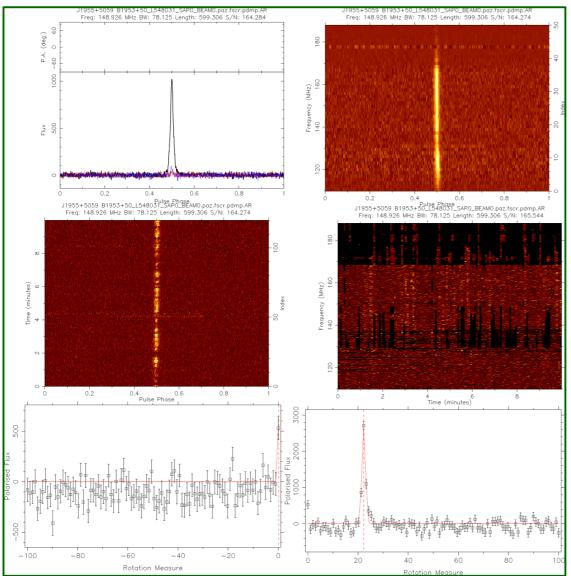
If there are 16 chan/sub, we need to zap every 16th channel, then list becomes «0 15 31 47...» This is necessary, as when 2nd PPF is used, the first channel in each subband gets corrupted


DSPSR Pipeline (2, cont.)

combining frequency parts; for every TAB, PSR


DSPSR Pipeline (3, cont.)

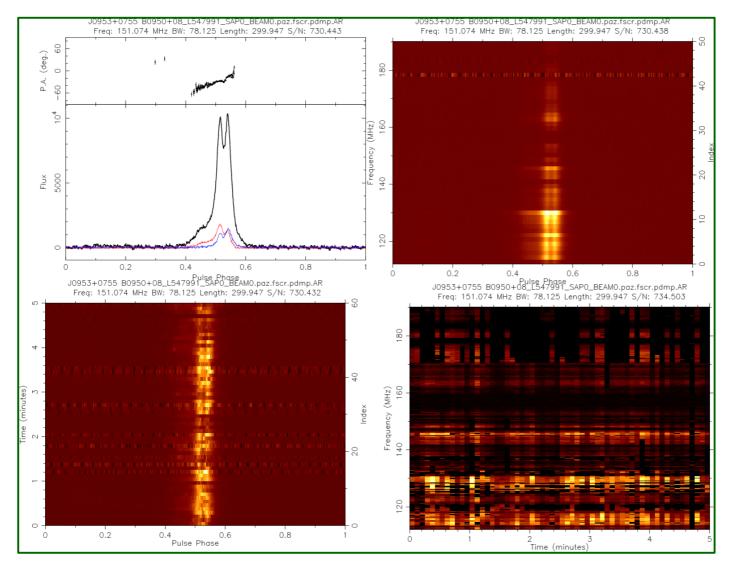
combining frequency parts; for every TAB, PSR



<fscrunch_factor> = Nsubs / X, where X = highest common denominator of Nsubs between 1 and min{Nsubs, 63}

DSPSR Pipeline (4)

Diagnostic plots (1)

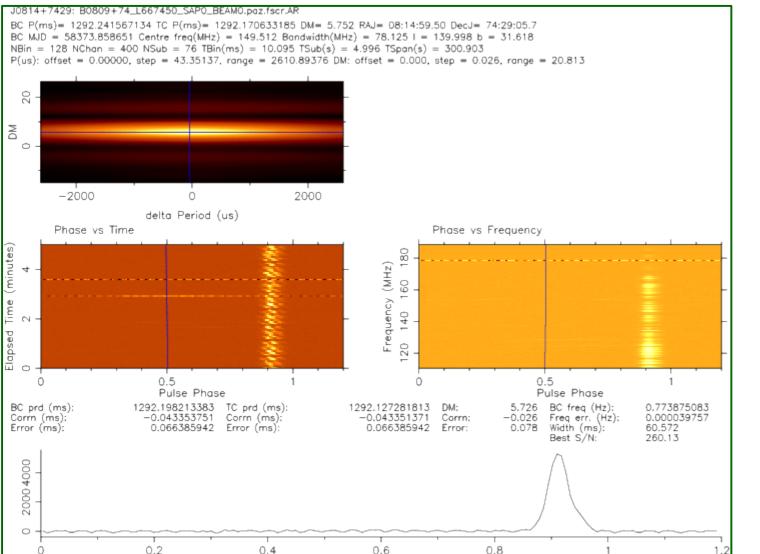


- *_diag.png
- *_diag_pdmp.png

pav rmfit

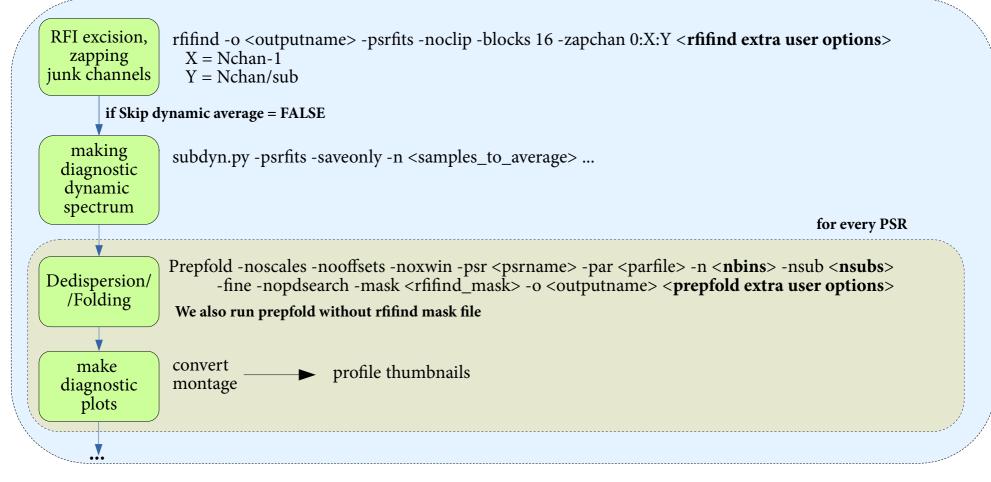
Diagnostic plots (2)

status.png


*_diag.png

*_diag_pdmp.png

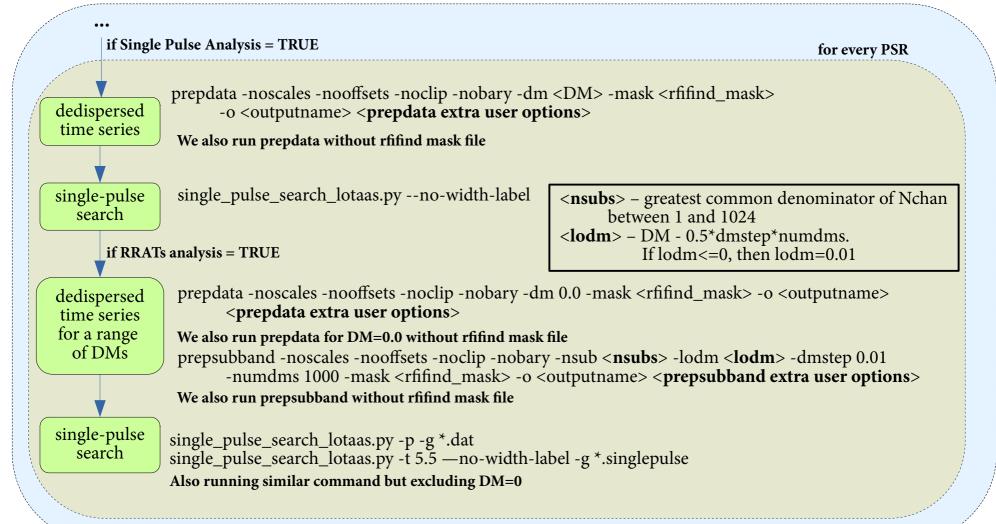
pdmp


*_pdmp.ps

Diagnostic plots (3)

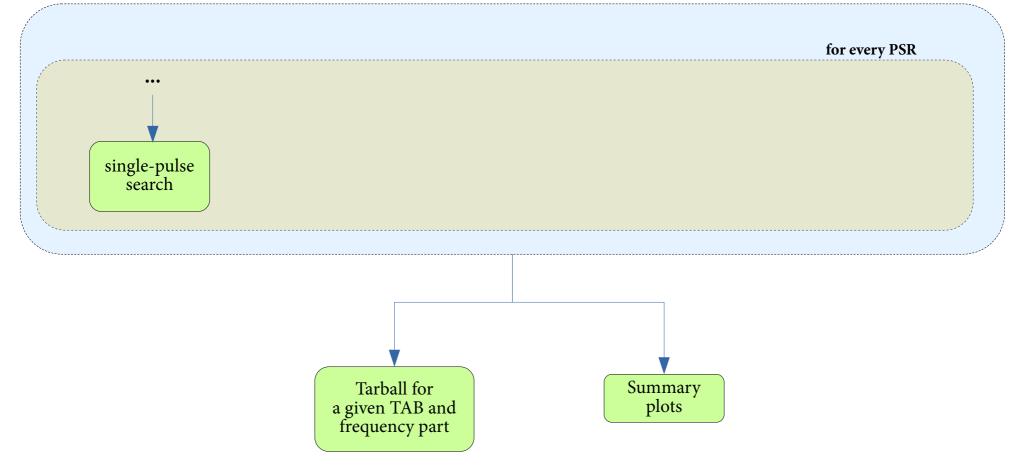
PRESTO Pipeline (1)

for every TAB, and frequency part

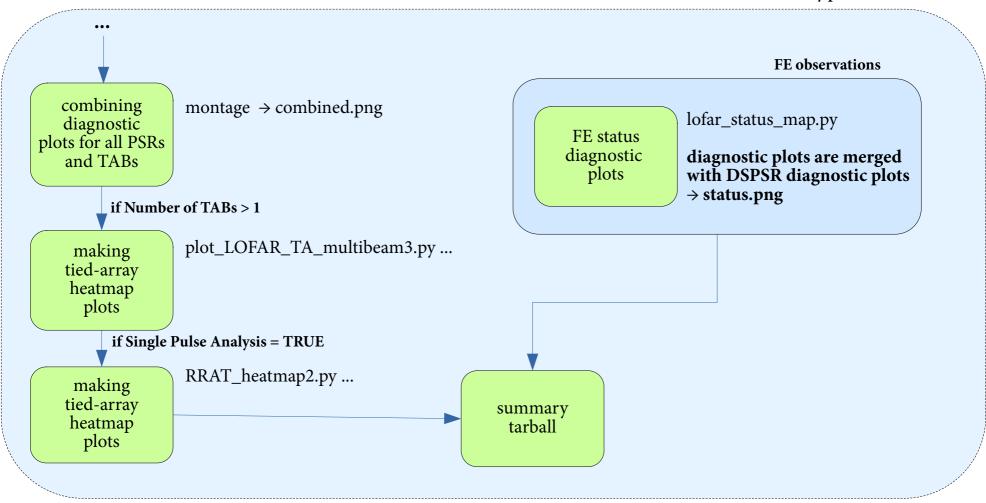


<nbins> - calculated automatically based on the sampling time and F0/P0 from the parfile. Maximum possible <nbins>=1024

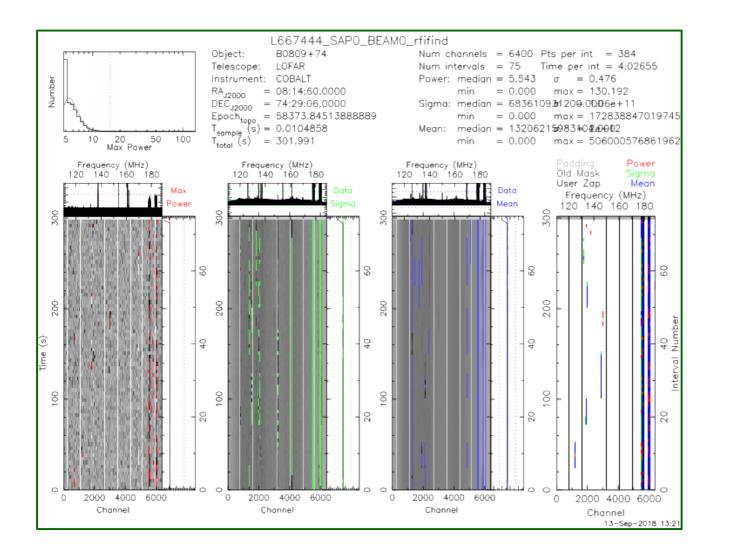
<nsubs> - if Nchan > 512, nsubs = 512. Otherwise, nsubs = Nchan


PRESTO Pipeline (2, cont.)

for every TAB, and frequency part

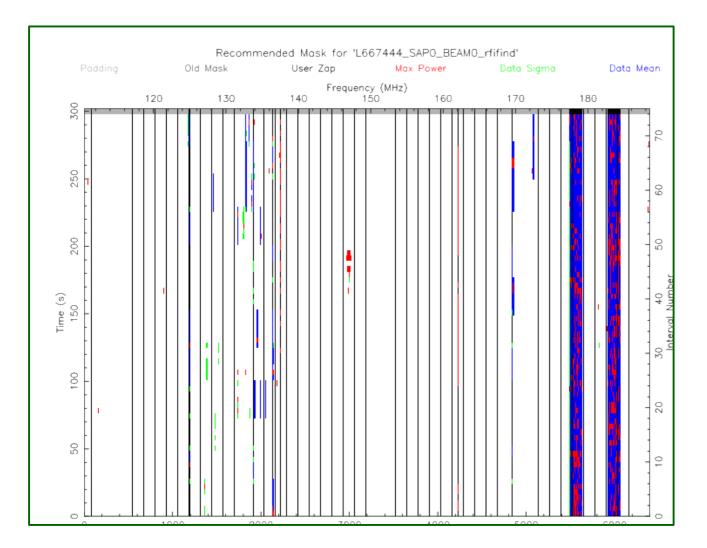

PRESTO Pipeline (3)

for every TAB, and frequency part


PRESTO Pipeline (4)

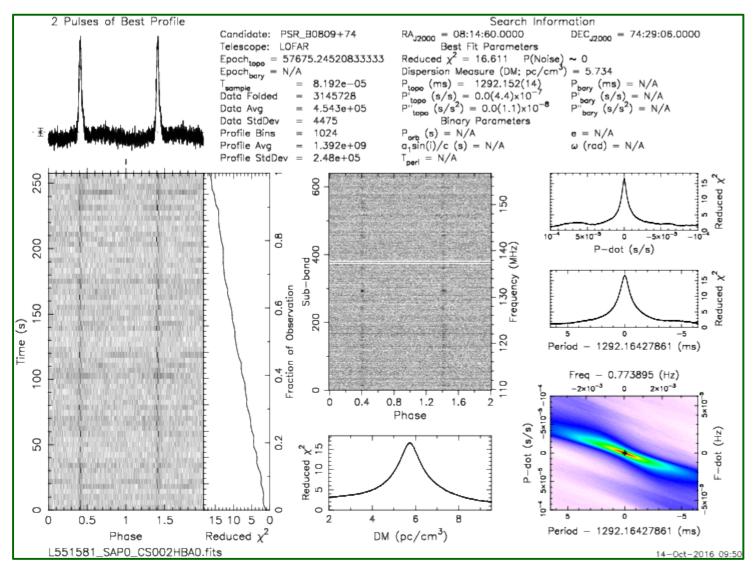
Summary plots

rfifind


Diagnostic plots (1)

*_rfifind.ps

rfifind


Diagnostic plots (1, cont.)

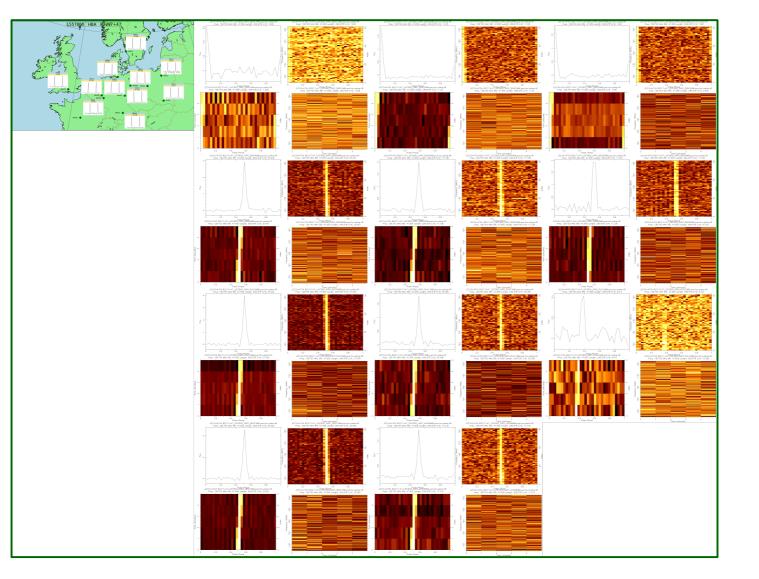
*_rfifind.ps

prepfold

Diagnostic plots (2)

*_pfd.png

Diagnostic plots (3)

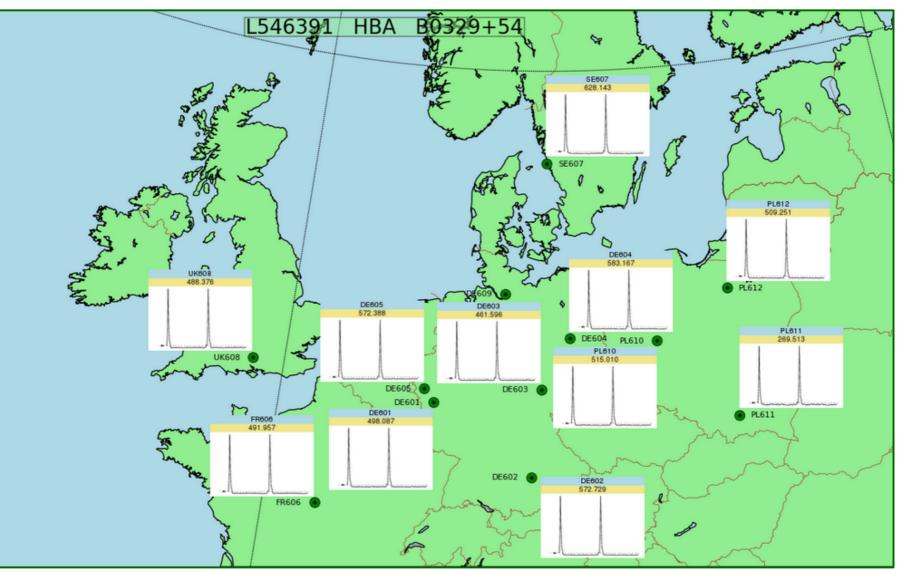

multiple TABs
prepfold

2 Puises of Best Profile	2 Pulses of Best Profile	2 Puises of Best Profile	2 Puises of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile	2 Puises of Best Profile	2 Pulses of Best Profile	2 Puises of Best Profile
CS SAP0 BEAM0 B2315+21 S/N = 17.4014	CS SAP0 BEAM1 B2315+21 S/N = 11.0847	CS SAP0 BEAM10 B2315+21 S/N = 14.2002	CS SAP0 BEAM11 B2315+21 S/N = 12.1225	CS SAPO BEAM13 B2315+21 S/N = 10.307	CS SAP0 BEAM14 B2315+21 S/N = 13.0979	CS SAP0 BEAM15 B2315+21 S/N = 13.9276	CS SAP0 BEAM10 B2315+21 S/N = 11.0220	CS SAP0 BEAM17 B2315+21 S/N = 16.7399	CS SAP0 BEAM18 B2315+21 S/N = 10.2264
2 Puises of Best Profile	2 Puises of Best Profile	2 Putters of Dest. Profile	2 Pulses of Best Profile	2 Puises of Best Profile	2 Puises of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile	2 Puises of Best Profile	2 Pulses of Best Profile
CS SAP0 BEAM19 B2315+21 S/N = 16.201	CS SAP0 BEAM2 B2315+21 S/N = 14.7192	CS SAP0 BEAM20 B2315+21 S/N = 12.4172	CS SAP0 BEAM21 B2315+21 S/N = 21.3822	CS SAP0 BEAN22 B2315+21 S/N = 16.3372	CS SAP0 BEAN23 B2315+21 S/N = 13.7688	CS SAP0 BEAM24 B2315+21 S/N = 6.91282	CS SAP0 BEAM25 B2315+21 S/N = 11.1900	CS SAP0 BEAM28 B2315+21 S/N = 24.039	CS SAP0 BEAM27 B2315+21 S/N = 20.8838
2 Puises of Best Profile	2 Puises of Best Profile	2 Puises of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile	2 Puises of Best Profile	2 Puises of Best Profile	2 Puises of Best Profile	2 Puises of Best Profile
CS SAP0 BEAM28 B2315+21 S/N = 10.7233	CS SAP0 BEAM29 B2315+21 S/N = 19.3109	CS SAPO BEAM3 B2315+21 S/N = 12.5036	CS SAP0 BEAM30 B2315+21 S/N = 32.5398	CS SAPO BEAN31 B2315+21 S/N = 19.6197	CS SAPO BEAM32 B2315+21 S/N = 11.0089	CS SAP0 BEAM33 B2315+21 S/N = 18.6885	CS SAP0 BEAM34 B2315+21 S/N = 23.4859	CS SAP0 BEAM35 B2315+21 S/N = 11.2568	CS SAP0 BEAM36 B2315+21 S/N = 10.6852
2 Puises of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile	2 Puises of Best Profile	2 Puises of Best Profile	2 Puises of Best Profile				
CS SAP0 BEAM37 B2315+21 S/N = 8.56902	CS SAP0 BEAM38 B2315+21 S/N = 9.38646	CS SAP0 BEAM39 B2315+21 S/N = 8.92982	CS SAP0 BEAM4 B2315+21 S/N = 9.05004	CS SAP0 BEANH0 B2315+21 S/N = 12.8891	CS SAP0 BEANH1 B2315+21 S/N = 13.818	CS SAP0 BEANH2 B2315+21 S/N = 15.0184	CS SAP0 BEAM43 B2315+21 S/N = 10.1742	CS SAP0 BEAM44 B2315+21 S/N = 11.193	CS SAP0 BEAM45 B2315+21 S/N = 7.71163
2 Pulses of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile	2 Puises of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile	2 Puises of Best Profile			
CS SAP0 BEAMH0 B2315+21 S/N = 18.9459	CS SAP0 BEAM47 B2315+21 S/N = 19.474	CS SAP0 BEAM48 B2315+21 S/N = 19.111	CS SAP0 BEANH9 B2315+21 S/N = 12.0537	CS SAP0 BEAM5 B2315+21 S/N = 27.3946	CS SAP0 BEAN50 B2315+21 S/N = 16.0004	CS SAP0 BEAN51 B2315+21 S/N = 14.7918	CS SAP0 BEAM52 B2315+21 S/N = 22.843	CS SAP0 BEAM53 B2315+21 S/N = 13.7689	CS SAP0 BEAM54 B2315+21 S/N = 7.2385
2 Puises of Best Profile	2 Pulses of Dest Profile	2 Pulses of Best Profile	2 Pulses of Best Profile	2. Pulses of Best Profile					
CS SAP0 BEAM55 B2315+21 S/N = 0.24744	CS SAP0 BEAM56 B2315+21 S/N = 6.8764	CS SAP0 BEAM57 B2315+21 S/N = 6.64597	CS SAP0 BEAN58 B2315+21 S/N = 12.0544	CS SAP0 BEAM59 B2315+21 S/N = 15.3876	CS SAP0 BEAMB B2315+21 S/N = 29.8342	CS SAP0 BEAM60 B2315+21 S/N = 16.1165	CS SAP0 BEAM61 B2315+21 S/N = 15.118	CS SAP0 BEAM62 B2315+21 S/N = 7.2061	CS SAP0 BEAM83 B2315+21 S/N = 7.20533
2 Puises of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile						
CS SAP0 BEAMB4 B2315+21 S/N = 6.12009	CS SAPO BEAM85 B2315+21 S/N = 9.55546	CS SAPO BEAM66 B2315+21 S/N = 11.0354	CS SAPO BEAM67 B2315+21 S/N = 6.52937	CS SAPO BEAM68 B2315+21 S/N = 6.80881	CS SAPO BEAM69 B2315+21 S/N = 8.74714	CS SAP0 BEAM7 B2315+21 S/N = 11.776	CS SAPO BEAM7 J2322+2057 S/N = 6.08014	CS SAP0 BEAM70 B2315+21 S/N = 6.89268	CS SAPO BEAM71 B2315+21 S/N = 9.154
2 Puses of Best Profile	2 Puises of Best Profile	2 Pulses of Best Profile	2 Pulses of Best Profile						
CS SAP0 BEAM72 B2315+21 S/N = 8.57884	CS SAP0 BEAM73 B2315+21 S/N = 14.2614	CS SAP0 BEAM8 B2315+21 S/N = 127.711	CS SAP0 BEAM9 B2315+21 S/N = 14.7821						

combined.png

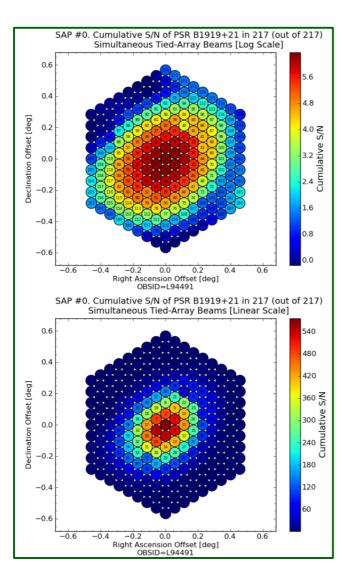
for FE observations

Diagnostic plots (4)



status.png

for FE observations


Diagnostic plots (4, cont.)

status.png

multiple TABs

Diagnostic plots (5)

TAheatmap_*.png

PulP output data

- Raw data in 8-bit format (optional)
- Raw .h5 metadata files
- Pulsar data cubes (both from PRESTO and DSPSR pipelines)
- PRESTO pipeline:
 - \rightarrow rfifind mask
 - → PSRFITS filterbank data
- DSPSR pipeline:
 - → filterbank file(s) when SP analysis was done (optional)
- Single-pulse data (optional)
 - → .singlepulse
 - \rightarrow Single-pulse plots
- Diagnostic plots
 - → Plot with multiple profiles (multiple TABs, etc.) *combined.png*
 - → DSPSR diagnostic plots status.png
 - → Localization maps *TAheatmap_*.png*

Pulsar software (needed by PulP)

- FFTW
- PGPLOT, + python bindings
- TEMPO
- TEMPO2
- psrcat
- Sigproc
- **PRESTO** (by Scott Ransom, https://www.cv.nrao.edu/~sransom/presto/)
- psrdada
- **PSRCHIVE** (by Willem van Straten, http://psrchive.sourceforge.net/)
- DAL
- **DSPSR** (by Willem van Straten, https://dspsr.sourceforge.net)
- COAST_GUARD (by Patrick Lazarus, for RFI excision)
- LOFAR-BF-pulsar-scripts
- in the future (needed for pulsar flux calibration):
 - → casacore
 - → python-casacore
 - → mscorpol

https://github.com/vkond

@github

Vlad Kondratiev

http://www.astron.nl/~kondratiev/

vkond

Block or report user

	Repositories 7		
Search repo	ositories		
LOFAR-I	BF-pulsar-scri	pts	
🔵 Python 🤺	r1 ♀1 Updated on	1 May 26	
dockers			
different dock	er files		
🛑 Shell 🛛 💡 1	Updated on Mar 27		
pulp			

Various scripts

https://github.com/vkond/LO FAR-BF-pulsar-scripts

Dockerfile for LOFAR

https://github.com/vkond/dockers

PulP: *https://github.com/vkond/pulp*

Hands-on prerequisites

1. Docker / singularity container — psr-lds2021.[sif | tar] (~1.7 GB)

→ Follow the link to download from the instructions that were sent earlier

2. Download the raw input and PulP-processed data for t4-pulp following the link in the same instructions

- → NOTE the total disk volume is very LARGE ~ 800GB!
- However, if you have limited disk space, it is not a show-stopper, not all data are needed at once and for XXYY data (the largest) you can get by by downloading smaller tarballs with preprocessed data (dspsr step).

3. Minimum requirements:

- → very small disk space: CS_XXYY_light_noraw.tgz (~203 MB)
- → modest disk space: CS_XXYY_raw_light.tgz (17.5 GB)
- → large disk space: CS_XXYY_raw_p[0-3].tgz (~350 GB)
- → PulP-processed data: CS_XXYY_pulp_noraw_8bit.tgz (~800 MB) [Optional]
- 4. Extra data to explore different observing setups [raw tgz / pulp-processed tgz]:
 - \rightarrow Coherent sum of the stations, Stokes I: CS_I_raw.tgz / CS_I_pulp.tgz
 - \rightarrow Both coherent & incoherent sum of the stations, Stokes I:

CS_IS_I_raw.tgz / CS_IS_I_pulp.tgz

- → Coherent sum of the stations, Stokes IQUV: CS_IQUV_raw.tgz / CS_IQUV_pulp.tgz
- → Coherent sum of the stations, 6 rings of TABs: CS_6rings_raw.tgz / CS_6rings_pulp.tgz
- → Fly's Eye observation, Stokes I: FE_I_raw.tgz / FE_I_pulp.tgz

[Optional]

Test the container / software

1. If you are working on CEP3, follow the separate instructions on how to log in to a CEP3 working node and how to start your Singularity or Docker container there.

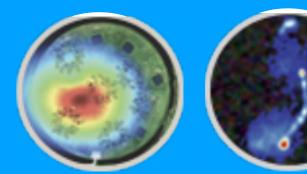
2. In general:

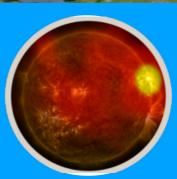
→ Ďocker:

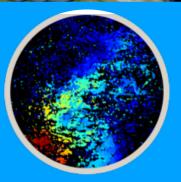
- docker run --net=host -w \${HOME} -e \${USER} -e \${HOME}--rm -it psr:lds2021 [-u <uid>:<gid>] - you can even run it as root with -u 0:0 (be careful though!) -v <datadir>:<datadir> - make sure you have directory with the data that you"ve downloaded for the hands-on session
- If you have problems with opening up GUI applications from dockers, try:
 - xhost +local:root (outside docker before starting it)
 - Add following options to your docker run command:
 - -e DISPLAY -e QT_X11_NO_MITSM=1 -v /tmp/.X11-unix:/tmp/.X11-unix:rw
- → Singularity:
 - *singularity shell --bind <your/path/to/school/folder>*, *psr-lds2021.sif*
- 3. Test the software:
 - → Run, e.g.:
 - dspsr -h
 - *pdmp* -*h*
 - You should get the list of command-line options. If you get some errors instead, something is wrong. Let us know to help you out.

[simple, but not safe; There are other solutions as well]

Hands-on session


- Following the PulP steps:
 - \rightarrow you will manually run PulP commands to understand them better for one of the beamformed (BF) observation with the setup usually used for pulsar timing observations (CS_XXYY).
 - \rightarrow compare the results with those from automated PulP
 - → optional: play with other PRESTO/dspsr options
 - \rightarrow optional: add extra processing into the mix, e.g.:
 - converting to 8-bit
 - single-pulse analysis
 - RRATs analysis
- Pulsar flux calibration
- Explore processing steps for other input data for the different observing setups
- Easier way to retrieve your «PulP'ed» BF data from the LTA




Questions?

6th LOFAR Data School

March 22-26, 2021

