

6th LOFAR Data
School

March 22-26, 2021

PulP: hands-on
Vlad Kondratiev

(ASTRON)

Curriculum:
●First things first:

make sure you have working docker/singularity environment and you have
downloaded at least minimally required data to work with.

● Following the PulP steps:
→ you will manually run PulP commands to understand them better for
one of the beamformed (BF) observation with the setup usually used for
pulsar timing observations (CS_XXYY).
→ compare the results with those from automated PulP
→ optional: play with other PRESTO/dspsr options
→ optional: add extra processing into the mix, e.g.:

● converting to 8-bit
● single-pulse analysis
● RRATs analysis

● Pulsar flux calibration

● Explore processing steps for other input data for the different observing setups

● Easier way to retrieve your «PulP'ed» BF data from the LTA

0

1

2
3
4

Hands-on prerequisites

1. Docker / singularity container — psr-lds2021.[sif | tar] (~1.7 GB)
 Follow the link to download from the instructions that were sent earlier

2. Download the raw input and PulP-processed data for t4-pulp following the link in the same
instructions

 NOTE — the total disk volume is very LARGE ~ 800GB!
 However, if you have limited disk space, it is not a show-stopper, not all data are needed at once

and for XXYY data (the largest) you can get by by downloading smaller tarballs with pre-
processed data (dspsr step).

3. Minimum requirements:
 very small disk space: CS_XXYY_light_noraw.tgz (~203 MB)
 modest disk space: CS_XXYY_raw_light.tgz (17.5 GB)
 large disk space: CS_XXYY_raw_p[0-3].tgz (~350 GB)
 PulP-processed data: CS_XXYY_pulp_noraw_8bit.tgz (~800 MB) [Optional]

4. Extra data to explore different observing setups [raw tgz / pulp-processed tgz]:
 Coherent sum of the stations, Stokes I: CS_I_raw.tgz / CS_I_pulp.tgz
 Both coherent & incoherent sum of the stations, Stokes I:

CS_IS_I_raw.tgz / CS_IS_I_pulp.tgz
 Coherent sum of the stations, Stokes IQUV: CS_IQUV_raw.tgz / CS_IQUV_pulp.tgz
 Coherent sum of the stations, 6 rings of TABs: CS_6rings_raw.tgz / CS_6rings_pulp.tgz
 Fly's Eye observation, Stokes I: FE_I_raw.tgz / FE_I_pulp.tgz

[Optional]

0

Test the container / software

1. If you are working on CEP3, follow the separate instructions on how to log in to a CEP3 working
node and how to start your Singularity or Docker container there.

2. In general:
 Docker:

● docker run --net=host -w ${HOME} -e ${USER} -e ${HOME}--rm -it psr:lds2021
[-u <uid>:<gid>] - you can even run it as root with -u 0:0 (be careful though!)
-v <datadir>:<datadir> - make sure you have directory with the data that you“ve
downloaded for the hands-on session

● If you have problems with opening up GUI applications from dockers, try:
● xhost +local:root (outside docker before starting it)
● Add following options to your docker run command:

● -e DISPLAY -e QT_X11_NO_MITSM=1 -v /tmp/.X11-unix:/tmp/.X11-unix:rw

 Singularity:
● singularity shell --bind <your/path/to/school/folder>, psr-lds2021.sif

3. Test the software:
 Run, e.g.:

● dspsr -h
● pdmp -h

 You should get the list of command-line options. If you get some errors instead, something is
wrong. Let us know to help you out.

[simple, but not safe;
There are other solutions
as well]

Explore PulP processing (1)
1. In this hands-on session you will try to execute different PulP commands manually, explore
the output data, and compare with the results from the automated pipeline. In this part of the
tutorial the focus is on the first dataset CS_XXYY, you can explore other datasets yourself later
in the week or after the school.

2. The data:
 5-min observations of the pulsar B0809+74 with different observing setups, namely:

● 1 tied-array beam (TAB), complex-voltage data (CV) — CS_XXYY
● 1 TAB, Stokes I data— CS_I
● 1 incoherent beam (station beam) + 1 TAB, Stokes I — CS_IS_I
● 1 TAB, Stokes IQUV — CS_IQUV
● 127 TABs (6-ring setup), Stokes I — CS_6rings
● Fly's Eye observation, Stokes I — FE_I

 Both raw data and automatically processed by PulP (pulp)
 We assume the data are here:

● Raw: <your/path/to/school/folder>/t4-pulp/raw = <t4-pulp>/raw
● PulP: <your/path/to/school/folder>/t4-pulp/pulp = <t4-pulp>/pulp

1

Explore PulP processing (2)
3. In this hands-on session we will be processing CS_XXYY observation L667450

 Untar the data with:
● tar xvfz CS_XXYY_raw_p[0-3].tgz for each tarball - if you have ALL raw data
● or: tar xvfz CS_XXYY_raw_light.tgz
● or: tar xvfz CS_XXYY_light_noraw.tgz
● also untar the corresponding PulP-processed tarball:

● tar xvfz CS_XXYY_pulp_noraw_8bit.tgz

 Raw data will be in:
● (i) <t4-pulp>/raw/CS_XXYY — if you have ALL raw data
● (ii) <t4-pulp>/CS_XXYY_raw_light — if you have raw data for only 1 frequency part P000
● (iii) <t4-pulp>/CS_XXYY_light_noraw — if you have only pre-processed data by DSPSR

4. create the working directory:

 cd <t4-pulp>
 mkdir -p <tutorial> [you can name it whatever you want]
 cd <tutorial>

5. copy parfile from «pulp» directory to the current directory:
● cp <t4-pulp>/pulp/CS_XXYY/L667494/pulp/cs/0809+74.par .

1

Explore PulP processing (3)
6. If you do not have raw data (iii):

 copy *.ar files in the current directory:
● cp ../CS_XXYY_light_noraw/*.ar .

 or make the links:
● ln -s ../CS_XXYY_light_noraw/*.ar .

 skip steps 7-8, continue with the step 9.

7.First lets dedisperse/fold the data for a single (1st) frequency part:

 dspsr -b 1024 -A -L 5 -E 0809+74.par -O B0809+74_L667450_SAP0_BEAM0_PART0 -U minX1 -t 1
<t4-pulp>/data/raw/CS_XXYY/L667450/cs/L667450_SAP000_B000_S3_P000_bf.h5 [as input you give only
ONE .h5 file for a given part. It can be any out of four]
● in case (ii) use <t4-pulp>/CS_XXYY_light_noraw/L667450_SAP000_B000_S3_P000_bf.h5 as input file

 Inspect the metadata (header) of the output ar-file with psredit command:
● psredit B0809+74_L667450_SAP0_BEAM0_PART0.ar

 Were the data dedispersed?
 You can plot the profile using e.g. pav command:

● pav -DFTp B0809+74_L667450_SAP0_BEAM0_PART0.ar
● Or polarimetric profiles: pav -SFT B0809+74_L667450_SAP0_BEAM0_PART0.ar
● To plot the spectrum: pav -GTp B0809+74_L667450_SAP0_BEAM0_PART0.ar
● To remove dispersion delay between channels you can add «d» option to pav:

● pav -GTpd B0809+74_L667450_SAP0_BEAM0_PART0.ar

 In case (ii) skip the step 8 and continue with the step 9.

1

Explore PulP processing (4)
8. In case (i) run dspsr for all parts (except the 0th which was already done):

 for part in `seq 1 1 19`; do echo "PART=$part" ; dspsr -b 1024 -A -L 5 -E 0809+74.par -O
B0809+74_L667450_SAP0_BEAM0_PART${part} -U minX1 -t 1
<t4-pulp>/data/raw/CS_XXYY/L667450/cs/L667450_SAP000_B000_S3_P`printf "%03d" $part`_bf.h5 ; done

 Using «-t 1» (number of threads=1) usually a good idea here as to give room for other users on this cluster. In
automated pipeline we also use this as Slurm does not expect processes in PulP to use large number of cpus.

9. Add frequency parts together:
 psradd -R -m time B0809+74_L667450_SAP0_BEAM0_PART*.ar -o b0809.ar
 psredit b0809.ar

● Was bandwidth increased?
 pav -DFTpd b0809.ar

● Do you see the profile?
 pav -GTpd b0809.ar

● What can you tell about the spectrum?

10. Zapping RFIs:
 clean.py -F surgical -o b0809.paz.ar b0809.ar
 pav -DFTpd b0809.paz.ar

● How does it look?
 pav -GTpd b0809.paz.ar

● And now?

11. Extra manual RFI excision:
 pazi b0809.paz.ar [save changes pressing «S» button]
 OR: psrzap b0809.paz.ar
 Move new .pazi or .zap file to b0809.pazi.ar

1

Explore PulP processing (5)
12. Dedispersion:

 pam -D -e dd.ar b0809.pazi.ar
 psredit b0809.pazi.dd.ar

● What is changed?

13.Create different diagnostic plots using pav
 Make use of the PulP lecture or read pav manual: pav -h
 Compare diagnostic plots with plots from autmated PulP, look for status.png file

14. Optimize period and DM:
 pdmp -mc 100 -mb 128 b0809.pazi.dd.ar
 How much DM and period have changed?
 Correct the archive file updating the DM and period:

● pam -D -e pdmp.AR -d <new DM> --period <new topo Period> b0809.pazi.dd.ar
● Inspect with psredit and pav
● Did S/N improve?
● Note, pdmp optimizes P/DM based on higher S/N which is not always the correct! Be mindful!

15. Optional: do single-pulse analysis for this CV observation.
 digifil for every part
 sigproc_splice
 prepdata
 single_pulse_search_lotaas.py OR simply: single_pulse_search.py

16. Extra:
 Run prepfold on input *.fil data (from digifil and sigproc_splice).
 Run similar dspsr command as before but using .fil file as input.

● How does the profile look like? Same as before? What is different?

1

In general (see e.g. Lorimer & Kramer 2005):

C = SEFD

Pulsar flux calibration (intro) 2

► Δf / f ~ 0.5 (huge)

LOFAR

Contributing factors
► Beam shape has strong dependence on AZ, EL, and frequency, and thus the gain, G
► Gain(f) ≠ const
► Tsys = Tsky + Tinst
► Tsky(f) ~ f -2.55

► Tinst(f) ≠ const
► Tsrc(f) ≠ const (ignore for now)

+
► Broken tiles (~5%)
► Coherence scaling S/N ~ N0.85, N — number of 48-tile stations
► Radio frequency interference (RFI), on average 25-30% (MSP data, 1 ch/sub,

normally — much less)

In general (see e.g. Lorimer & Kramer 2005):

C = SEFD

β — digitization factor = 1
GL, GB — Galactic longitude and latitude
γ — coherence factor ≈ 0.85
N

s
 — number of stations used

n
p
 — number of polarizations (2)

A
eff

 — effective area of a 48-tile station

ξ — average fraction of bad/flagged
dipoles/tiles
ζ — RFI fraction
nbins — number of bins in the profile
T

obs
 — observation length (s)

Δf — frequency channel width (Hz)

Pulsar flux calibration (intro) 2

In general (see e.g. Lorimer & Kramer 2005):

C = SEFD

β — digitization factor = 1
GL, GB — Galactic longitude and latitude
γ — coherence factor ≈ 0.85
N

s
 — number of stations used

n
p
 — number of polarizations (2)

A
eff

 — effective area of a 48-tile station

ξ — average fraction of bad/flagged
dipoles/tiles
ζ — RFI fraction
nbins — number of bins in the profile
T

obs
 — observation length (s)

Δf — frequency channel width (Hz)

Pulsar flux calibration (intro)

New preliminary
coherence factor
for Cobalt:
γ = 0.816

2

Beam models

In practice →
Table of 91 ELs * 361 AZs * 29 frequencies

● AZ, 0 — 360 deg, 1-deg step
● EL, 0 — 90 deg, 1-deg step
● Frequency, 110 — 250 MHz, 5-MHz step

Note! When calibrating, for a given EL
Aeff is averaged over all azimuths,
as the stations are randomly rotated.

1) “arts”, improved Hamaker model, provides full EM simulations of a 24-tile HBA
sub-station, including edge effects and grating lobes (Hamaker's model is based on an
infinite array of elements).

2) “arisN”, maximum theoretical value of Aeff (Amax) is scaled as ~sin(EL)^1.39 as in
Noutsos et al. (2015). For HBA, Amax = 48 * 16 * min{λ2/3, 1.5625}.

3) “hamaker_carozzi”, maximim theoretical value of Aeff (Amax) is corrected by a
corresponding factor calculated from the Carozzi's implementation of the Hamaker
model. In practice, we use functions from the “mscorpol” package (on Github) written by
Tobia Carozzi that calculate Jones matrices for a given HBA station, date/time and
frequency (there is also a standalone script antennaJones.py to do that). Unlike “arts”
model, this model is based on a real station (it uses coordinates, cable delays and time
deltas). We used CS001, the difference for other stations is much smaller than the
nominal flux error.

Aeff is scaled by B(PSR)/B(CasA), where B= 0.5 * | Jxx x Jxx
* + Jxy x Jxy

* + Jyx x Jyx
* + Jyy x Jyy

* |,
The value of B(PSR) is normalized by reference value of the CasA observation B(CasA)
used in Wijnholds & van Cappelen for A/T measurements. Although, for all freqs the value
for CasA is almost 1.0 (changing in 2-3 digits after decimal point).

2

In general (see e.g. Lorimer & Kramer 2005):
C = SEFD

For all three beam models all ingredients
are the same except for the value of Aeff

Pulsar flux calibration (intro) 2

Other literature/presentations:

● More info about the LOFAR pulsar calibrations in the following papers:

 «A LOFAR Census of MSPs», Kondratiev et al. 2016, A&A, 585, 128
 «A LOFAR Census of non-recycled pulsars:...», Bilous et al. 2016, A&A, 591, 134

● and several LOFAR Status Meeting (LSM) presentations:
 Kondratiev, LOFAR MSP Population. Pulsar flux calibration, Jan 7, 2015
 Kondratiev, Bilous, LOFAR Pulsar Flux Calibration, Oct 14, 2015
 Kondratiev, van Amersfoort, New stations' coherency test, May 9, 2018

● all LSM presentations can be found online here:
 https://www.astron.nl/LofarSlides/index.php

2

OFF-window

Xi
mean
rms

(S/N)
i
 = (X

i
 - mean) / rms

i — profile bin

Flux
i
 = (S/N)

i
 * SEFD

Pulsar flux calibration (profile, S/N) 2

Other factors affecting flux measurements
● Scattering → hard to get S/N, it is underestimated

● Refractive scintillations.
Can change pulsar flux by a factor of ~1.5. Need long-term monitoring
program
Diffractive scintillations is not a factor → averaged out, Δνd < 0.2 MHz

● Beam jitter by the ionosphere.
Can be up to ~2-3 arcmins, i.e. half the Full-Core HBA TA beam (at half maximum)

● Variation of Tsys with time due to rise/set of the Galactic plane (up to 30-40%
when Galactic plane is in the FoV) and other strong background sources.
Also with pointing direction due to noise coupling effects.

Despite these factors:

● We've got ~20% agreement with EOR data for the new LOFAR pulsar
J0815+4611

● Flux estimates from the MSSS images (Rene Breton) for several MSPs —
on average there is an agreement within ~40%

2

Pulsar flux calibration (software)

use -h option to get help

● tsky.py – Tsky (GL, GB, freq) or (RA, DEC, freq)

● lofar_tinst.py – T of the instrument (both HBA and LBA)
--plot – Tinst-vs-Freq diagnostic plot

● lofar_gain.py – Aeff (freq, EL) for a 48-tile station (HBA only)
--plot - diagnostic plots

 --model <arts | arisN >. For hamaker_carozzi beam model
one can use corresponding function(s) after
importing it as a module

●snr.py – calculate S/N using different methods (Q-Q probability plot,
Off-pulse range, Polynomial to the baseline), so one can choose proper
method and/or other parameters (fscrunching/bscrunching, off-pulse
window) for flux calculation

2

Pulsar flux calibration (software)

use -h option to get help

● lofar_psrflux.py – to calculate flux density in mJy for a given
PSRFITS file (ar-file). First tscrunching all observation (so, good only
for not very long ones)
--plot, --plot-saveonly – diagnostic plots
--spectrum=#NCHAN – to produce calibrated spectrum for N output
channels, and plot
--spectrum-skip-first-channels=#INCHAN
--spectrum-skip-last-channels=#INCHAN
--model <arts | arisN | hamaker_carozzi>

● lofar_fluxcal.py – to calibrate the samples in mJy in the PSRFITS file (or
writes out new file). Calibrates separately individual sub-integrations.
Can also calibrate different Stokes separately.

--model <arts | arisN | hamaker_carozzi>
--plot* and --spectrum* options are also there

Both programs can read .h5 file to get number of stations using --meta option (preferable
Way). Unfortunately, info about the flagged tiles is not yet available for BF data. Currently,
this info can be obtained via separate scripts (explained further) and passed to the
lofar_fluxcal.py or lofar_psrflux.py via command-line option --flagged

2

Pulsar flux calibration (software)

All scripts are available in the github:

http://github.com/vkond/LOFAR-BF-pulsar-scripts

in the fluxcal sub-directory

2

http://github.com/vkond/LOFAR-BF-pulsar-scripts

Lets flux-calibrate some data… (1)
1. Lets calibrate the data from the previous Part I of this tutorial

 Use *.ar file after the step 12 or 14 of Part I
 Lets assume the file to calibrate is called b0809.ar

2. Update your docker with the following commands:
● only needed for provided docker/singularity containers, antenna position files were not

kept in the tree, so we need to download them again
 cd /opt/lofarsoft
 mkfir -p usg/data/lofar
 cd usg/data/lofar
 svn co http://usg.lofar.org/svn/code/trunk/data/lofar .
 cd <t4-pulp>/tutorial

2

Lets flux-calibrate some data… (3)
3. Then we need to run snr.py script to determine the method to calcalute S/N and other
parameters specific for the method. There are 3 methods you can choose from QQ, Off, and
Polynom. So far, the best method to use is «Off», where you determine the Off-pulse window to
calculate the S/N of the profile. The «QQ» method is based on calculating noise rms on Q-Q
plots, and in my experience is not very reliable. The «Polynom» method can be used for very
broad profiles. In this case the polynom is fit to the profile, gets subtracted and noise mean/rms
are calculated. There are pitfalls in this method. During the calibration the S/N within each
channel/sub-integration should be high enough, otherwise noise will be fit, and rms will be
underestimated (S/N will be overestimated). There is also «Psrstat» method, but you can not use
it for calibration. It is present only in snr.py to cross-check against other methods.

 First to make snr.py work faster, we will Ftp scrunch our ar-file, as we only need the average
profile for snr.py:
● pam -FTp -e prof b0809.ar

 Then run snr.py command using created .prof file as an input:
● snr.py --snrmethod=Off --plot b0809.prof

2

Lets flux-calibrate some data… (4)
4. You get the output and top sub-plot look like this:

5. Yellow shows the current
Off-pulse window, the horizontal
area is 1-sigma region, and vertical
blueish region, are the samples
above 3-sigma.

6. Now, you can play with --off-left
and --off-right options, together
with extra phase-scrunching (-b)
and optional profile phase-rotation (-r)
to select desirable Off-pulse window

2

Lets flux-calibrate some data… (5)
7. However, it is easier to start with --auto-off option which in most cases will do the best job for
you. It will try to automatically rotate the profile and maximise the Off-pulse window for you.
You may only want to bscrunch your profile if it is needed (-b). The command is then simply:

 snr.py --snrmethod=Off --auto-off --plot b0809.prof

8. And the output and plot will look like this:

9. If you are not satisfied with the Off-pulse selection,
you can adjust it by using the option
--auto-off-adjust to adjust ON-pulse window

2

Lets flux-calibrate some data… (5)
7. However, it is easier to start with --auto-off option which in most cases will do the best job for
you. It will try to automatically rotate the profile and maximise the Off-pulse window for you.
You may only want to bscrunch your profile if it is needed (-b). The command is then simply:

 snr.py --snrmethod=Off --auto-off --plot b0809.prof

8. And the output and plot will look like this:

9. If you are not satisfied with the Off-pulse selection,
you can adjust it by using the option
--auto-off-adjust to adjust ON-pulse window

2

These are the parameters
determined by the script.
You must use them exactly as
the input for the lofar_fluxcal.py
or lofar_psrflux.py.

Lets flux-calibrate some data… (bad tiles)
10. For calibration it is important to know what tiles/dipoles were flagged as bad, or ar least to know
the total fraction of flagged tiles in a given observation. Unfortunately, for BF data this information is
not yet available in the HDF5 metadata. Instead, other workarounds must be used to get this info.

11. The Radio Observatory collects this information in the database, and thanks to Wilfred Frijswijk
and Sander ter Veen, they provided us with the means to get this information.

12. There is getState.py script together with the ascii db about the flagged tiles that can be downloaded
now from ASTRON's resource page, and will be part of the LOFAR-BF-pulsar-scripts Github
repository as well. Make sure to update the db file «hardwire_states_latest.txt» file regularly especially
for calibration of new observations.

13. To get the flagged tiles/dipoles info for a given timestamp, array config, run:
 First you need to copy one of the .h5 files from the same directory where all .ar and .AR files are.

It can be any one h5-file. This file is needed to provide info about stations used and the time of
observation
● cp <t4-pulp>/pulp/CS_XXYY/L667494/pulp/cs/rawvoltages/SAP0/BEAM0/L667450_SAP000_B000_S0_P000_bf.h5 .

 Run getState.py:
● cp -r /usr/local/src/LOFAR-BF-pulsar-scripts/tiles/lofar_antenna_state .
● cd lofar_antenna_state/
● ./getState.py -i ../L667450_SAP000_B000_S0_P000_bf.h5 -s all -f ../flagged.txt
● cd ..

14. Get the fraction of the flagged tiles to be used as the input for flux-calibration scripts:
● get_flagged_tiles.py -v -f flagged.txt -a HBA L667450_SAP000_B000_S0_P000_bf.h5

2

Lets flux-calibrate some data… (7)
15. The output from get_flagged_tiles.py looks like this:

2

Lets flux-calibrate some data… (7)
15. The output from get_flagged_tiles.py looks like this:

16. Now, it is time to run flux calibration script:

 lofar_fluxcal.py -t 12 -f 16 --flagged 0.0503472 --meta
L667450_SAP000_B000_S0_P000_bf.h5 --off-left 185 --off-right 1024 -r 0.761719 -b 1 --
snrmethod=Off --model hamaker_carozzi --plot-saveonly --plot --spectrum 5 -v b0809.ar

 For the full list of available options use run: lofar_fluxcal.py -h
 -f 16 – to fscrunch in frequency by a factor of 16, otherwise it will run much longer
 -t 12 – to scrunch in time by a factor of 12 (1-min average)
 you can get more verbose output with --vv option

2

This value must be used in the --flagged option
for lofar_fluxcal.py or lofar_psrflux.py

Lets flux-calibrate some data… (8)
17. The output from lofar_fluxcal.py can look like this:

2

Lets flux-calibrate some data… (8)
17. The output from lofar_fluxcal.py can look like this:

2

Note, this is only the nominal error, there
are many factors that can affect flux
measurements, and we estimate the conser-
vative error on the flux to be within
40-50% (see Bilous et al. 2016)

Lets flux-calibrate some data… (9)
18. The more detailed output is also being saved to b0809.calib.flux.ascii

19. The calibrated ar-file (in units of mJy) is also created: b0809.calib.ar

20. Also ascii files with flux measurements across the band are created if --spectrum option was
used. In our case file b0809.calib.spectrum.5.txt was created, where «5» means that band was
split in 5 frequency parts. The file reads as:

 In the --spectrum option you can specify several splits, like «3,5» and then two files will be
created where band is split in 3 and 5 parts. You can also use options --spectrum-skip-first-
channels and/or --spectrum-skip-last-channels to skip number of channels in the original
file (possibly scrunched if -f was used).

21. For calibration I suggest to use the original (unscrunched) file after the pipeline (could be
RFI zapped). In this case the weights are not changed. If you give scrunched files that were
scrunched after the RFI zapping, then the RFI fraction can no longer be correctly retrieved. In
such case you can also consider to use --max-weight option.

2

Lets flux-calibrate some data… (10)
22. There is also the diagnostic plot created (if options --plot and --plot-saveonly were used). In
our case the image file is b0809.calib.flux.png and it looks like this:

The spectrum with fit
is also shown if option
--spectrum was used.
Otherwise, file will only
have the upper sub-plot

NOTE, do not trust the in-band
spectral indices! They are very
inprecise.

2

Lets flux-calibrate some data… (11)
23. You can get these warning messages from casacore when running flux calibration:

24. Of course the corresponding files should be updated, but in practice the corresponding
values for AZ, EL, effective area will be pretty much the same if the actual time was off by 1 s, so
you can ignore it, but make sure to update your Cacasore installation later.

25. To make use of hamaker_carozzi model, you should have mscorpol package installed
(written by Tobia Carozzi). You can find it here:

 https://github.com/2baOrNot2ba/mscorpol
 you also need python-casacore to be installed

26. In theory, same scripts can be used to calibrate LBA data, but in practice only HBA
calibration was characterised and conservative errors were derived. At the moment we simply
do not know how good this calibration is for LBA data.

27. The calibration was presented here for HBA Core data. For the Core the reference station is
set to be CS002 by default. This can be changed with the --station option. In this case the
coordinates for another station should also be given with --latitude and --longitude options.
When only one station was used in a observation, this station will be the reference. The
coordinates still need to be given with --latitude and --longitude. This could the case for a FE
observation or observation with an International station.

2

or more recent DreamBeam package:
https://github.com/2baOrNot2ba/dreambeam

Note: lofar-fluxcal.py have not been tested
with DreamBeam yet

https://github.com/2baOrNot2ba/mscorpol
https://github.com/2baOrNot2ba/dreambeam

3Explore PulP processing for other
observing setups

1. Manually process the raw data for other observing setups (Stokes I, IQUV data, 6-ring setup,
Fly's Eye observation), following the workflow presented in T4, and compare with the results
from the automated PulP

 Tip: you can also check the log-files in the corresponding directories for PulP-processed
data in <t4-pulp>/pulp/, such as *_summary*.log, *_sap000_beam0000*.log to see what
commands were run, and options used.

Why scripts vs. web-interface?

● use LTA web-interface (see D1 by Manu Orru)
● or scripts to download specifically pulsar BF data processed by PulP

 you need to know the exact ObsID(s) to download the data
 or, if you want all data from the project, then you need to know the project code

LTA retrieve of «PulP'ed» data (1)

Pros: ● no need to surf through many pages to select files you need on the web
● you can stage and download many files from different ObsIDs and projects in one go
● you can specifically choose to download only summary data from all given ObsIDs
excluding processed data in *_red directories
● the download will start as soon as there is at least one tarball already staged without
waiting for all files to be staged. This makes it faster
● the downloaded data will be automatically extracted

Cons: ● You need to know the exact ObsIDs or Project code to download the data
● Sophisticated search or filtering is not possible

What scripts?
 → lta-query.py
 → lta-retrieve.py

https://github.com/vkond/LOFAR-BF-pulsar-scripts
Where?

in the LTA sub-directory

4

LTA retrieve of «PulP'ed» data (2)

1. retrieval is done via wget command, so you must setup wget configuration file ~/.wgetrc
 Create file if it does not exist yet
 Add new line with username info: user=<your LTA username>
 Add new line with the password: password=<your LTA password>
 NB. This ~/.wgetrc is unencrypted, so at least close it from reading by others, with

 chmod 600 ~/.wgetrc

2. Also check that you have file ~/.awe/Environment.cfg with correct LTA username and
password (fields database_user and database_password)

 If you don't have such file, also check that lta-retrieve.py -h command provides you with
the options listing. Otherwise, you may need to install the script from the Github. Together
with scripts there is also an example of this configuration file, where you need to change
the username and the password.

 Change the current value in database_user after the «:» with your LTA username
 Do the same for your password in the field database_password
 Protect your file from reading by others (this file is also not encrypted):

chmod 600 ~/.awe/Environment.cfg

3. Obtain csv-file with all data stored in the LTA for the given project
 lta-query.py -p <PROJECT_CODE>

4

LTA retrieve of «PulP'ed» data (3)

4. For example, for the Pulsar HBA Census project LC1_003:
 lta-query.py -p LC1_003
 You then get file csv-file lc1_003.csv in the working directory

5. The contents of this csv-file is as follows:
FILENAME,FILESIZE,CREATION_DATE,URI,OBSERVATIONID
"LOFAR_PULSAR_ARCHIVE_locus001_L202462_red_23cd49f3.tar",24303851520,2014-06-03
06:48:45,"srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lofar/ops/projects/lc1_003/202462/
LOFAR_PULSAR_ARCHIVE_locus001_L202462_red_23cd49f3.tar","202462"
"LOFAR_PULSAR_ARCHIVE_locus001_L202467_red_f60201c2.tar",25033717760,2014-06-03
05:30:54,"srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lofar/ops/projects/lc1_003/202467/
LOFAR_PULSAR_ARCHIVE_locus001_L202467_red_f60201c2.tar","202467"
….

6. The last column ObsID is especially useful for the observations since ~Cycle 3, when
pipeline ID and ObsID become different, so this can help to get the link between observation
and its PulP data products

4

Usage: lta-retrieve.py <ObsID.txt1> <ObsID.txt2>...

Options:
 -h, --help show this help message and exit
 --sap=SAP# retrieve data only for the given SAP
 --tab=TAB# retrieve data only for the given TAB
 --part=PART# retrieve data only for the given PART
 --summary-only retrieve only summary directories (CSplots, or
 CVplots, or redIS). This option has priority over
 options --sap, --tab, --part, and --skip-summary
 --skip-summary Do not retrieve summaries
 --stage-only Only stage the data without downloading
 --skip-staging Skip staging and start downloading right away
 --obsids input arguments are ObsIDs instead of ascii files.
 Based on given ObsIDs corresponding files will be
 looked at designated area on CEP2
 -f FORMAT, --format=FORMAT
 column format of input ascii files. By default
 (websummary), it is the same as from web-summary
 pages. Other format is 'manual', it's csv format from
 manual LTA query (expert mode)

LTA retrieve of «PulP'ed» data (4)

7. To download all tarballs for a given ObsId (or PipeID):
 lta-retrieve.py -u <your LTA username> --csvfile=lc1_003.csv L202460

8. You can see all available options with:
 lta-retrieve.py -h

 --csvfile=CSV-FILE specify single csv-file (comma-separated-values)
 with srm-links for all given ObsIDs. With this option, it
 is assumed that you give the list of ObsIDs instead of
 ascii files, therefore this option automatically sets
 --obsids and --format='manual'. Only lines for given
 ObsIDs will be used from this csv-file
 --query as --csvfile but runs SQL query instead of using given
 csv file. One must specify project as well with
 --project option. If both --csvfile and --query are
 given, then --csvfile option has the priority
 -p PROJECT, --project=PROJECT
 specify the project to query. Only to be used with
 --query option
 -u USERNAME, --username=USERNAME
 specify the LTA username. By default, it's the same as
 your current login name
 -l, --log optional parameter to turn on wget output
 -q, --quiet turn off logging from the communication with the LTA
 database

4

LTA retrieve of «PulP'ed» data (5)

9. Using --format and --obsids options is obsolete, as nowadays you should just use --csvfile
option.

10. You should always provide -u option

11. Using --query with -p is the same as with lta-query.py. However, if you plan on running
multiple lta-retrieve.py commands, it is more efficient to run lta-query.py first, and then re-use
of the csv-file.

12. You can only stage the data with --stage-only, or skip the staging and proceed with the
download (when you know the data were already staged) with --skip-staging.

13. You can download (or stage) only the summaries with --summary-only, or skip the
summaries with --skip-summary.

14. You can also specify to download the data (not summaries) for a given SAP, TAB, or
frequency part, with options —sap, --tab, --part. Note, however, that these options make only
sense to use from ~Cycle 3, when data were ingested via central system. Before that data were
ingested to the LTA manually where filenames do not have info about SAP, TAB, and PART.

4

LTA retrieve of «PulP'ed» data (6)
15. Now, try to query the project and retrieve the data from your favorite ObsID….

16. Note, staging can take a while (~few days), and depending on the size of the tarballs, your
network, the download can take some time as well. I have staged the data from LC1_003 before,
so, you can try to download some of the observations from this project.

17. Beware, the disk size is not unlimited, and you are working with several other groups on the
same node. So, do not try to download many observations. If you changed your mind, remove
the data you have downloaded previously.

18. First, run lta-query.py to get the csv-file with all ingested data for this project

19. Looking in csv-file pick one ObsID/PipeID to download

20. Tip to download all the data for this project. (Be mindful of the data volume!)
The lta-retrieve.py requires the list of space-separated ObsIDs to download. To get this list,

you can try this bash command:

cat lc1_003.csv | grep -v FILENAME | cut -d , -f 5 | cut -d \" -f 2 | sort -n -k 1 | uniq | awk '{printf "L%s\n", $1}' - | paste -s -d ' '

4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

