
3_reading_hdf5_complex_voltage_data

March 24, 2021

1 Tutorial: HDF5 complex voltage data
This tutorial will cover how to read beamformed complex voltage data in HDF5 format.

Again, let’s load the python libraries that we will use.

[1]: import numpy as np
import matplotlib.pyplot as plt
import h5py
import os
%pylab inline

Populating the interactive namespace from numpy and matplotlib

As we covered in the lecture, complex voltage data is located over 4 files, with the real and imaginary
values of polarizations X and Y mapped to files as follows: S0 = xr, S1 = xi, S2 = yr and S3 = yi.

Let’s start by opening the S0 and S1 files of OBSID L645495 and reading the attributes of the
STOKES_0 group in the S0 file. Note that to read the raw files, the h5py library requires the path
to be that of the files, so use os.chdir to change the directory to that of the data.

[2]: os.chdir("../../data/L645495")
h5_s0 = h5py.File("L645495_SAP000_B000_S0_P000_bf.h5", "r")
h5_s1 = h5py.File("L645495_SAP000_B000_S1_P000_bf.h5", "r")

[3]: group = h5_s0["/SUB_ARRAY_POINTING_000/BEAM_000/STOKES_0"]
keys = sorted(["%s"%item for item in sorted(list(group.attrs))])
for key in keys:

print(key + " = " + str(group.attrs[key]))

DATATYPE = float
GROUPTYPE = bfData
NOF_CHANNELS = [1 1 1 1 1 1 1 1 1 1]
NOF_SAMPLES = 117178368
NOF_SUBBANDS = 10
STOKES_COMPONENT = Xr

1.1 Exercise 1
Have a look at the output above. You’ll see that the data is stored as floating point values, with
10 subbands per file. As expected, S0 contains the real value of X.

1

1. Now read the S1 file and inspect the Stokes group. Can you confirm that this contains the
imaginary part of X?

2. Read the attribute storing the number of subbands.
3. Read the attribute storing the sampling time. Remember from the

earlier tutorial that this is stored in INCREMENT attribute of the
/SUB_ARRAY_POINTING_XXX/BEAM_YYY/COORDINATES/COORDINATE_0 group.

4. Read the attribute storing the subband frequencies.

[4]: group = h5_s1["/SUB_ARRAY_POINTING_000/BEAM_000/STOKES_1"]
keys = sorted(["%s"%item for item in sorted(list(group.attrs))])
for key in keys:

print(key + " = " + str(group.attrs[key]))

DATATYPE = float
GROUPTYPE = bfData
NOF_CHANNELS = [1 1 1 1 1 1 1 1 1 1]
NOF_SAMPLES = 117178368
NOF_SUBBANDS = 10
STOKES_COMPONENT = Xi

[5]: tsamp = h5_s0["/SUB_ARRAY_POINTING_000/BEAM_000/COORDINATES/COORDINATE_0"].
↪→attrs["INCREMENT"]

nsub = h5_s0["/SUB_ARRAY_POINTING_000/BEAM_000/STOKES_0"].attrs["NOF_SUBBANDS"]
freq = h5_s0["/SUB_ARRAY_POINTING_000/BEAM_000/COORDINATES/COORDINATE_1"].
↪→attrs["AXIS_VALUES_WORLD"]

print(tsamp, nsub, freq)

5.12e-06 10 [1.37109375e+08 1.37304688e+08 1.37500000e+08 1.37695312e+08
1.37890625e+08 1.38085938e+08 1.38281250e+08 1.38476562e+08
1.38671875e+08 1.38867188e+08]

1.2 Exercise 2
We now have the information to read the data in the STOKES_0 and STOKES_1 groups. Since the
input files have 4.4GB of data each, it is better to read in parts of the timeseries, as the entire
timeseries would fill up most of the memory of the computer. 1. We want to extract the timeseries
between 300 and 310 seconds from the start of the observation. Using the sampling time, compute
the array indices belonging to these times. (Remember that indices need to be integers). 2. Use
these indices to extract the real and imaginary components of X. What is the shape of the output
(use the .shape function of numpy arrays)? 3. Create an array with the time of each sample in the
selected range. 4. Use the slicing operations (e.g. a[0:10, 20:22]) to plot the first 100 samples of
xr and xi as a function of time. Try to plot each subband separately (e.g. using plt.subplot(5,
2, isub).) 5. What do the timeseries look like? What did you expect?

[6]: tmin = 300
tmax = 310
imin = int(tmin/tsamp)
imax = int(tmax/tsamp)
print(imin,imax)

2

58593750 60546875

[7]: xr = h5_s0["/SUB_ARRAY_POINTING_000/BEAM_000/STOKES_0"][imin:imax]
xi = h5_s1["/SUB_ARRAY_POINTING_000/BEAM_000/STOKES_1"][imin:imax]
print(xr.shape, xi.shape)

(1953125, 10) (1953125, 10)

[8]: t = np.arange(imin, imax) * tsamp

[9]: fig, axes = plt.subplots(5, 2, figsize=(20, 10))
for isub, ax in enumerate(axes.ravel()):

ax.plot(t[:100], xr[:100, isub], label="Xr %d" % isub)
ax.plot(t[:100], xi[:100, isub], label="Xi %d" % isub)
ax.set_xlabel("Time (s)")
ax.set_ylabel("Value (arbitrary)")
ax.legend(loc="upper right")

plt.show()

1.3 Exercise 3
The next step is to Fourier transform the complex voltage data to generate dynamic spectra. This
requires several steps, and we will go through them one by one. 1. We want the dynamic spectrum
to have 1024 channels. Compute how many spectra (let’s call them integrations) can be obtained
from the input timeseries. Store this in a nint variable. (Make sure it is an integer and rounded
down with e.g. np.floor). 2. Use the slice option to select nchan * nint values from the real and
imaginary timeseries of X, and create a complex timeseries of the form cin = Xreal + 1j * Ximag.
What is the shape of the complex timeseries? 3. Next, we will Fourier transform the complex time-
series. Assuming it is called cin, use cout = np.fft.fftshift(np.fft.fft(cin.reshape(nint,

3

nchan, -1), axis=1), axes=1) to perform the transform. This single command performs mul-
tiple steps: cin.reshape(nint, nchan, -1) reshapes the 2D array to a 3D array with shape
nint × nchan × nsub, next np.fft.fft(..., axis=1) performs the 1D Fourier transform along
axis 1, which is nchan. The resulting output has the two halves of the spectrum swapped, and
np.fft.fftshift..., axes=1), swaps the two halves back into the correct frequency order along
the nchan axis. What is the shape and type of the output values of cout? 4. numpy has a handy
function to compute the frequencies of channels of a Fourier transform. Run np.fft.fftfreq?
to see the usage of this function. Use this function, together with np.fft.fftshift to compute
an array of the frequency values around the center frequency of each subband. 5. Plot the real
and imaginary components of the first spectrum (cout[0, :, isub]) of each subband against the
frequency values. Use np.real and np.imag to get the complex components.

[10]: nchan = 1024
nint = int(np.floor(xr.shape[0] / nchan))
print(nint, nchan, nint * nchan, xr.shape[0])

1907 1024 1952768 1953125

[11]: cin = xr[:nint*nchan] + 1j * xi[:nint * nchan]
cin.shape

[11]: (1952768, 10)

[12]: cout = np.fft.fftshift(np.fft.fft(cin.reshape(nint, nchan, -1), axis=1), axes=1)

[13]: print(cout.shape, type(cout[0, 0, 0]))

(1907, 1024, 10) <class 'numpy.complex128'>

[14]: f = np.fft.fftshift(np.fft.fftfreq(nchan, d=tsamp))

[15]: fig, axes = plt.subplots(5, 2, figsize=(20,10))
for isub, ax in enumerate(axes.ravel()):

ax.plot((freq[isub] + f) * 1e-6, np.real(cout[0, :, isub]), label="r %d" %␣
↪→isub)

ax.plot((freq[isub] + f) * 1e-6, np.imag(cout[0, :, isub]), label="i %d" %␣
↪→isub)

ax.set_xlabel("Frequency (MHz)")
ax.set_ylabel("Value (arbitrary)")
ax.legend(loc="upper right")

4

1.4 Exercise 4
You will recall from Michiel’s lecture that the bandpass correction of COBALT is not perfect.
Compute and plot the mean amplitude values (use np.abs) of each subband, averaged over time.
Plot the amplitude values in decibels (dB: xdB = 10 log10(x)). What can you see from the averaged
bandpasses?

[16]: fig, axes = plt.subplots(10, 1, figsize=(20, 25))
for isub, ax in enumerate(axes.ravel()):

ax.plot((freq[isub] + f) * 1e-6, 10 * np.log10(np.mean(np.abs(cout[:, :,␣
↪→isub]), axis=0)), label="%d" % isub)

ax.set_ylabel("Power (dB)")
ax.legend()

ax.set_xlabel("Frequency (MHz)")

[16]: Text(0.5, 0, 'Frequency (MHz)')

5

1.5 Exercise 5
Let’s plot dynamic spectra. 1. Compute an array with times for each spectrum. 2. Pick a subband
and compute amplitudes for this subband. Convert them to decibels. 3. Plot the dynamic spectrum
(using plt.imshow) and make sure the axes are labelled correctly.

[17]: t = tmin + np.arange(nint) * (tsamp * nchan)

6

[18]: isub = 1
amp = np.absolute(cout[:, :, isub])
amp_db = 10.0 * np.log10(amp)
vmin = np.mean(amp_db) - 2.0 * np.std(amp_db)
vmax = np.mean(amp_db) + 6.0 * np.std(amp_db)

[19]: fig, ax = plt.subplots(figsize=(20, 10))
img = ax.imshow(amp_db.T, origin="lower",

aspect="auto", extent=[t[0], t[-1], (freq[isub]+f[0]) * 1e-6,␣
↪→(freq[isub] + f[-1]) * 1e-6],

vmin=vmin, vmax=vmax)
ax.grid()
ax.set_xlabel("Time (s)")
ax.set_ylabel("Frequency (MHz)")
cbar = fig.colorbar(img, ax=ax)
cbar.set_label("Power (dB)", rotation=270)

[]:

7

	Tutorial: HDF5 complex voltage data
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

