Discovery of fast radio transients at very low frequencies

Yogesh Maan

National Centre for Radio Astrophysics (NCRA), Pune, INDIA

June 02, 2015

Yogesh Maan (NCRA)

June 02, 2015 1 / 22

1 Motivations for transient searches at low frequencies

- 2 Telescope, Observing setup, and Observations
- Transient Search Methodology
- 4 Scrutiny and properties of detected transients
- 5 Possible Source(s) of the transients

In general

- Sporadic emission from unknown pulsars, RRATs, intermittent pulsars, etc.
- Radio flares from active stars, planets, Sun (and Sun-like stars)
- Low-DM counterparts of the high-DM FRBs/Lorimer-burst
- New class of transients

Specific to relevant data

Search for radio counterparts of gamma-ray pulsars via:

- Non-persistent/Transient emission
- Highly scattered bright pulses

Observations: Telescope

Observations using the Gauribidanur Radio Telescope (situated near Bangalore, India) in *phased-array (tied-array)* mode.

- East-West rows of single linear polarization dipoles (160×4; 1.4 km long)
- Centre Frequency: 34 MHz; Bandwidth: ~ 1.5 MHz
- Beam-width: $0.35^{\circ} \times 21^{\circ}$ (RA×DEC)
- Effective collecting area: 12,000 m²
- A transit instrument with electronic transit capability

Observations and transient search towards J0633+1746/J0633+0632:

- Raw voltage sequence recorded at Nyquist rate
- Offline processing: Converting to filterbank format, RFI mitigation, etc.
- 131 observing sessions, each typically 30 minutes long, spread over \sim 9 months (2012–2013)
- Data from 32 sessions were not usable due to severe RFI.
- From rest of the 99 sessions, strong, fast transient events were discovered in 2 sessions

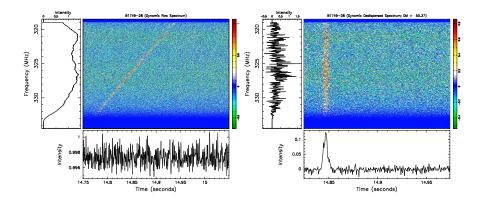
Standard transient search methods, fine-tuned and optimized for transients expected at low frequencies, an in-house developed pipeline well tested and successfully used for last several years.

- Dedispersion
- Matched-filtering
- Thresholding
- Oiagnostics
- Scrutinizing

Dedispersion

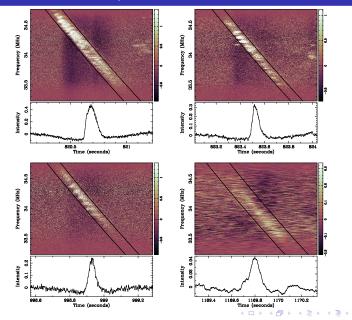
Frequency-dependent refractive index of the ISM

$$\mu = \sqrt{1 - \left(\frac{f_{\rho}}{f}\right)^2}$$


implies a frequency-depended time-of-arrival of a pulsed signal

$$t = \frac{e^2}{2\pi m_e c} \frac{\int_0^d n_e \,\mathrm{d}I}{f^2}$$
$$DM = \int_0^d n_e \,\mathrm{d}I$$

Transient Search Methodology: Dedispersion


Dedispersion

Effect of, and correction for, the dispersion in the ISM:

Yogesh Maan (NCRA)

Discovery of transients/radio-bursts

Radio-bursts: Basic parameters

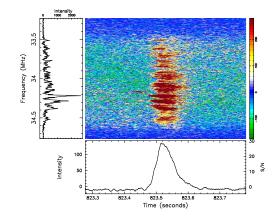
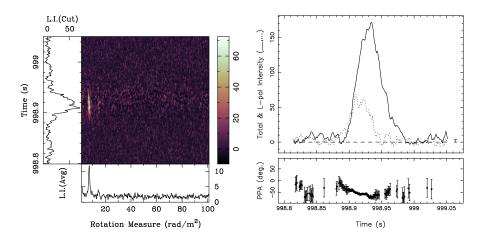
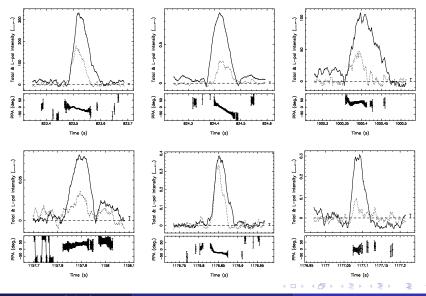

S.no.	\mathbf{DM} (pc cm ⁻³)	Width (ms)	S/N
1	$2.16{\pm}0.07$	110	323
2	$2.01{\pm}0.04$	75	172
3	$2.08{\pm}0.06$	85	148
4	$2.62{\pm}0.13$	140	58
5	$1.42{\pm}0.04$	55	102
6	$1.40{\pm}0.08$	90	54
7	$2.30{\pm}0.15$	95	19
8	$2.09{\pm}0.20$	180	37
0	$1.45{\pm}0.11$	50	26
10	$1.42{\pm}0.10$	40	37
11	$1.47{\pm}0.07$	45	47
12	$2.59{\pm}0.40$	170	12
13	$1.74{\pm}0.27$	195	17

Table : Properties of the detected transients

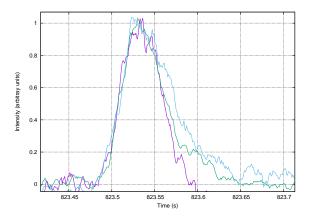

Origin of the bursts: Terrestrial or Astronomical ?

Origin of the bursts: Terrestrial or Astronomical ?

Signature of Faraday Rotation?



Time-resolved Rotation Measure Synthesis



Maximum contribution from ionosphere : 2 rad m^{-2}

Polarization properties of radio bursts

...and possible hints of interstellar scattering

 \Rightarrow Almost certain that the transients are not of terrestrial origin.

Sr. No.	Arrival Time (seconds)	Pulse width (ms)	Pulse Energy (Jy.ms)	Dispersion Measure (pc cm ⁻³)	Rotation Measure [†] (Rad. m ⁻²)
Session A	<u>L</u>				
1	820.69 ± 0.03	110	403000 [556900]	2.16 ± 0.07	_
2	823.53 ± 0.02	75	174000 240500	2.01 ± 0.04	9.4 ± 0.8
3	824.42 ± 0.03	85	159700 220700	2.08 ± 0.06	$12.6\pm2.8^{\ddagger}$
4	944.11 ± 0.03	140	81000 111900	2.62 ± 0.13	_
5	998.93 ± 0.02	55	89600 [123800]	1.42 ± 0.04	7.3 ± 0.4
6	1000.41 ± 0.02	90	60300 🛘 83400	1.40 ± 0.08	7.0 ± 0.7
7	1157.89 ± 0.03	95	22200 30600	2.30 ± 0.15	6.3 ± 1.1
8	1169.80 ± 0.03	180	58600 81000	2.09 ± 0.20	_
9	1172.50 ± 0.01	50	21600 29800	1.45 ± 0.11	_
10	1176.86 ± 0.01	35	26600 36800	1.42 ± 0.10	10.6 ± 1.3
11	1177.07 ± 0.01	30	26400 36400	1.47 ± 0.07	10.7 ± 1.1
12	1186.41 ± 0.04	170	18500 25500	2.59 ± 0.40	_
13	1187.39 ± 0.02	195	28300 [39000]	1.74 ± 0.27	_
Session E	3				
14	713.10 ± 0.04	130	57100 [79000]	3.62 ± 0.17	_
15	1345.99 ± 0.07	270	91300 [126200]	2.91 ± 0.17	—
16	1518.90 ± 0.05	150	106600 [147300]	3.41 ± 0.11	_

Table : Summary of properties

1. Sun

- Varying DM, and no significant departure from dispersion law needs too much of a coincidence
- Linear Polarization Unprecendented
- Observed Rotation Measure values Possible
- Pulse-widths Unlikely
- \bullet Sun's position Offset from the pointing center: $\approx 18^{\circ} \text{possible}$
- Archival solar data show no radio bursts at the epochs of radio bursts

 \Rightarrow Sun is unlikely to be the origin.

Possible source(s) of the radio bursts

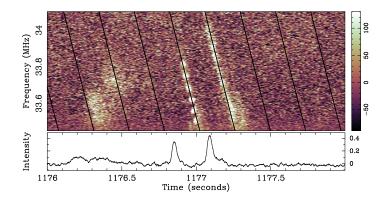
2. Pulsar(s)

- Varying DM Unprecedented, needs to explain the physical mechanism
- Linear Polarization Okay
- Observed RM values Okay
- Polarization position angle sweeps Okay
- Pulse energy Okay; Giant Pulses have similar energy at these wavelengths
- Pulse widths Okay

 \Rightarrow A pulsar with variable Dispersion Measure ?

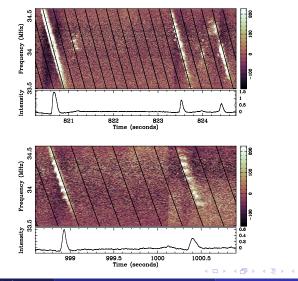
Possible source(s) of the bursts: Known Pulsars in the field (J0633+1746 and J0633+0632)

Sr. No.	Arrival Time (seconds)	Pulse width (ms)	Pulse Energy (Jy.ms)	Dispersion Measure (pc cm ⁻³)	Rotation Measure [†] (Rad. m ⁻²)
Session A	_				
1	820.69 ± 0.03	110	403000 [556900]	2.16 ± 0.07	_
2	823.53 ± 0.02	75	174000 240500	2.01 ± 0.04	9.4 ± 0.8
3	824.42 ± 0.03	85	159700 220700	2.08 ± 0.06	$12.6\pm2.8^{\ddagger}$
4	944.11 ± 0.03	140	81000 [111900]	2.62 ± 0.13	_
5	998.93 \pm 0.02	55	89600 [123800]	1.42 ± 0.04	7.3 ± 0.4
6	1000.41 ± 0.02	90	60300 [83400]	1.40 ± 0.08	7.0 ± 0.7
7	1157.89 ± 0.03	95	22200 30600	2.30 ± 0.15	6.3 ± 1.1
8	1169.80 ± 0.03	180	58600 [81000]	2.09 ± 0.20	_
9	1172.50 ± 0.01	50	21600 29800	1.45 ± 0.11	_
10	1176.86 ± 0.01	35	26600 36800	1.42 ± 0.10	10.6 ± 1.3
11	1177.07 ± 0.01	30	26400 36400	1.47 ± 0.07	10.7 ± 1.1
12	1186.41 ± 0.04	170	18500 25500	2.59 ± 0.40	—
13	1187.39 ± 0.02	195	28300 39000	1.74 ± 0.27	—
Session B	_				
14	713.10 ± 0.04	130	57100 [79000]	3.62 ± 0.17	_
15	1345.99 ± 0.07	270	91300 [126200]	2.91 ± 0.17	_
16	1518.90 ± 0.05	150	106600 [147300]	3.41 ± 0.11	—


Table : Summary of properties

ヘロト 人間 ト 人 注 ト 人

Possible source(s) of the bursts: Known Pulsars in the field (J0633+1746 and J0633+0632)


1. J0633+1746 (Geminga)

Arrival times of radio bursts and the Geminga's periodicity.

Possible source of the bursts: Geminga pulsar

Arrival times of radio bursts and the Geminga's periodicity.

Discovery of radio bursts at 34 MHz: Inferences and Summary

- Detection of several highly energetic radio bursts.
- Arrival times of the bursts suggest these to be originated from the gamma-ray pulsar Geminga.
- Pulse-energies of the bursts are comparable to those of giant pulses from Crab pulsar, and might suggest an emission mechanism similar to that of giant pulses.
- The short timescale (as small as a minute) variation in DM indicates that the underlying cause of the variation is most likely associated with the pulsar.
- The short timescale variation in DM together with non-persistent radio emission may explain why the pulsar has been detected only occasionally.