



## The LOFAR Transients Key Science Project: status and updates on image plane transients

#### Dario Carbone<sup>1</sup>,

Jess Broderick<sup>2</sup>, Benito Marcote<sup>3</sup>, Antonia Rowlinson<sup>4</sup>, Tim Staley<sup>2</sup>, Adam Stewart<sup>2</sup>, Sara Turriziani<sup>5</sup> and the LOFAR Transients Key Science Project

<sup>1</sup> Anton Pannekoek Institute for Astronomy, Amsterdam, NL

<sup>3</sup> Universitat de Barcelona, ESP <sup>4</sup> Sydney, AUS

<sup>5</sup> Università di Rom Tor Vergata, IT





LOFAR is detecting image-plane transient and variable sources





## The LOFAR Transients Key Science Project: status and updates on image plane transients

#### Dario Carbone<sup>1</sup>,

Jess Broderick<sup>2</sup>, Benito Marcote<sup>3</sup>, Antonia Rowlinson<sup>4</sup>, Tim Staley<sup>2</sup>, Adam Stewart<sup>2</sup>, Sara Turriziani<sup>5</sup> and the LOFAR Transients Key Science Project

<sup>1</sup> Anton Pannekoek Institute for Astronomy, Amsterdam, NL

<sup>3</sup> Universitat de Barcelona, ESP <sup>4</sup> Sydney, AUS

<sup>5</sup> Università di Rom Tor Vergata, IT





## Outline

 Methods to detect image-plane transients and to calculate transient surface density

• Examples of detections of image-plane transient and variable sources

### **Transient Pipeline**

- Provides lightcurves catalogue, list of transients and variable sources for radio image stack in near real-time.
- Images can be multiple overlapping pointing, different wavebands, different integration times, etc.
- Web-based analysis interface (banana).
- Paper published (Swinbank et al., 2015)
- Open-source! (available on github)
- Used by multiple radio facilities.

#### **Transient Pipeline**



#### **Transient Pipeline**



### Variability parameters

Weighted  $\chi^2$  of a fit to a constant flux:

$$\eta_{\nu} = \frac{N}{N-1} \left( \overline{\omega I^2} - \frac{\overline{\omega I}^2}{\overline{\omega}} \right)$$

Variability index:

$$V_{\nu} = \begin{pmatrix} s \\ \overline{\overline{I}} \end{pmatrix}$$



## Radio Sky Monitor sources - constant

- Radio Sky Monitor Sources
- Gaussian distributions



# How do transients behave in this space?

- 440 transient and variable sources with different lightcurve shapes and fluxes
- 55 different combinations of max flux and quiescent flux for each type of transient source



# How do transients behave in this space?

- 440 transient and variable sources with different lightcurve shapes and fluxes
- 55 different combinations of max flux and quiescent flux for each type of transient source
- Separated by straight lines



#### 4D space: more accurate

- 4d space:
  - Reduced weighted
  - Variability index
  - Max Flux
  - Max / Average Flux
- Variable and non-variable sources separated by a straight line in N-dimensions
- Supervised machine learning technique
- Training requires labeled data



Rowlinson et al., in prep.

- Literature: out of the whole dataset derive one upper limit
- Applied to a LOFAR survey of 4 fields, for a total of 63 snapshots of 11 minutes each.



- Literature: out of the whole dataset derive one upper limit
- We can eliminate the worst image and calculate a new method – iteratively

 Applied to a LOFAR survey of 4 fields, for a total of 63 snapshots of 11 minutes each.



- Literature: out of the whole dataset derive one upper limit
- We can eliminate the worst image and calculate a new method iteratively
- We can assume a power-law distribution in flux for the transients and calculate the u.l.
- Applied to a LOFAR survey of 4 fields, for a total of 63 snapshots of 11 minutes each.





#### Timescales

#### • Calculate transient upper limit vs Timescale



Dario Carbone, Assen – 02/06/2015

LOFAR is detecting image-plane transient and variable sources

## Adam's transient

- NCP monitoring project during MSSS-LBA
- Transient seen in one, 11 min snapshot at 60 MHz
- Brightness of 15-20 Jy
- Passed exhaustive validity tests

- No counterpart at higher frequencies
- At present the origin is unknown attempt to find more events, using data from Cycles 2 & 3.
- Paper about to be submitted



Dario Carbone, Assen -

Stewart et al., in prep.

#### PSR J2251+5135 An eclipsing redback pulsar in the RSM

 Variable image-plane source first spotted by eye, but also picked up by the TraP.



#### PSR J2251+5135 An eclipsing redback pulsar in the RSM

- Variable image-plane source first spotted by eye, but also picked up by the TraP.
- Position coincident with PSR J2215+5135 (Hessels et al. 2011).Discovered at 350 MHz with the GBT (survey of faint, unidentified *Fermi* gamma-ray sources).
- Paper submitted to MNRAS (Broderick et al.).





 $\rightarrow$  eclipses observed

#### Eclipse is longer at lower frequencies



- ~  $v^{-0.4}$  dependence
- We could have had a much finer orbital phase resolution, using beamformed data. (also relevant to FRB detections; e.g. see Hassall, Keane & Fender 2013).
- Very steep radio spectrum (~ v<sup>-2.8</sup>).
  - 74 MHz VLSSr data point from observations where PSR J2251+5135 is partially eclipsed

#### **TKP Jets Working Group**

- SS 433 paper to be submitted very soon (Broderick et al.).
- GRS 1915+105; marginal detection (~20-30 mJy).
- Searches for 'missing' SNRs (Anderson, Lizancos, Broderick et al. in prep.).
- LOFAR HBA + KAT-7 1.4 GHz (Broderick, Rushton et al. in prep.)

- Blazar monitoring: sources strongly variable at GHz-frequency.
- LOFAR: smooth behaviour; trends on timescales of months
- Turriziani et al. 2015





## The gamma-ray binary LS I +61 303

- High Mass X-ray Binary
- Orbitally modulated emission from radio to TeV energies.
- At GHz frequencies the radio lightcurve shows an outburst per orbital cycle.
- LOFAR lightcurve: outbursts are not clear and phase delay with respect to 15 GHz observations.
- Paper accepted (Marcote et al.)



LOFAR is detecting image-plane transient and variable sources

#### END





| Survey                | Sensitivity (mJy)    | $ ho ({\rm deg}^{-2})$ | tchar                       | v (GHz)          |
|-----------------------|----------------------|------------------------|-----------------------------|------------------|
| This work             | > 500                | < 0.001                | minutes - months            | 0.150            |
| Bell et al. 2011      | > 8                  | < 0.032                | 4.3 - 45.3 days             | 8.4, 4.8 and 1.4 |
| Gal-Yam et al. 2006   | > 6                  | $< 1.5 \cdot 10^{-3}$  | -                           | 1.4              |
| Croft et al. 2010     | > 40                 | < 0.004                | 81 days - 15 years          | 1.4              |
| Bower et al. 2007     | > 0.09               | < 6                    | 1 year                      | 8.4 and 4.8      |
| Bower et al 2010(A)   | > 1                  | < 1                    | 1 month                     | 3.1              |
| Bower et al 2010(B)   | > 10                 | < 0.3                  | 1 month                     | 3.1              |
| Bower & Saul 2010(A)  | > 70                 | < 0.003                | 1 day                       | 1.4              |
| Bower & Saul 2010(B)  | > 3000               | $< 9 \cdot 10^{-4}$    | 1 day                       | 1.4              |
| Lazio et al. 2010     | $> 2.5 \cdot 10^{6}$ | $< 9.5 \cdot 10^{-8}$  | 5 minutes                   | 0.0738           |
| Bell et al. 2014      | > 5500               | $< 7.5 \cdot 10^{-5}$  | minutes - year <sup>1</sup> | 0.154            |
| Alexander et al. 2014 | > 0.5                | < 17                   | minutes - months            | 4.9              |
| Bannister et al. 2011 | 14                   | $1.3 \cdot 10^{-2}$    | days - years                | 0.843            |
| Bower et al. 2007     | 0.37                 | $1.5 \pm 0.4$          | 20 minutes - week           | 8.4 and 4.8      |
| Bower et al. 2007     | 0.20                 | 2                      | 2 months                    | 8.4 and 4.8      |
| Jaeger et al. 2012    | 2.1                  | 0.12                   | 1 day - 3 months            | 0.325            |

#### Why is this interesting?



Very steep radio spectrum. 74 MHz VLSSr data point from observations where PSR J2251+5135 is partially eclipsed → explains discrepancy

Most robust approach for future work: simultaneous image-plane and beamformed observations (also relevant to FRB detections; e.g. see Hassall, Keane & Fender 2013).

