Probing Ionospheric Structure Using LOFAR

M.Mevius^{1,2}, S. van der Tol², V. Pandey²

¹Kapteyn Astronomical Institute, Groningen, Netherlands ²ASTRON, Dwingeloo, Netherlands

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

Outline

- Goal: accumulate many nights of data, remove foreground with best possible calibration
- Ionospheric errors: 1 of the main issues of calibration
- In the process of removing those errors you gain information about the ionospheric structure
- Ionospheric structure functions:
 - side product of calibration
 - useful in estimating remaining phase errors \rightarrow rms noise
- Investigate night to night structure variations
- Anisotropy due to Earth magnetic field

Observations

- 3C196 HBA
- 27 observations winter 2012/2013
- 2 observations winter 2013/2014
- Shr/8hr nignume all observations aligned in time
- 30 SB distributed over 115-175 MHz
- 1 channel per SB
- time resolution: 10s

VTEC @ LOFAR-CORE

(IONEX data from CODE)

Extracting TEC information

- Start from calibration phases:
 - 3C196 dominant:
 - single (4 component) source in skymodel
 - calibrate full polarization matrix gains with 10s time resolution
 - separate in differential Faraday rotation angle + diagonal amplitude + phases
- phases errors:
 - clock/cable length
 - ionospheric delay
 - cable reflections
 - beammodel errors
 - skymodel

Clock/TEC separation

interferometer: only sensitive to TEC differences

residuals of clock/tec fit versus time (CS017-CS001) ignoring other phase effects 1 baseline (~1km), 1 channel different colors: different observations all observations aligned in SRT

correlation between residuals: **beam-/skymodel effects** ignoring rest of the sky mainly source of error @ short baselines

dTEC solutions versus time, all stations (reference station: CS001) color coding according to baseline length

dTEC solutions versus time, all stations (reference station: CS001) color coding according to baseline length

dTEC solutions versus time, all stations (reference station: CS001)

color coding according to baseline length

 β =5/3, S₀ diffractive scale

Structure function all observations

Fit Parameters

Correlation with RMS image noise

- Night to night fluctuations in image noise
 - direction independent calibration only

non calibrator fields

- Diffractive scale is a measure of ionospheric quality of data
 - easily extracted from calibrator data
 - few solutions (~20) over large frequency range
- Can also be extracted from selfcal phase solutions of weaker fields
 - NO phase transfer from calibrator
 - TEC from Clock/TEC separation will be the determined by (flux weighted) average TEC over the field of view
- Mind: flux ratio can vary with frequency
 - eg. bright source at the edge of the beam
 - issue issue for "wild" nights, when ionosphere varies significantly over field of view
- example NCP

Bandlike structure

Orientation dependent Anisotropic structure

2D structure

Fit 2D structure all observations $\langle \phi \rangle = (S^{EW}/S_{0EW} + S^{NS}/S_{0NS})^{\beta}$

- Orientation dependent structures
- No clear preferred (NS/EW) direction

- Projected geomagnetic field lines
- projected along LOS
- axes are beam pointing angles in degrees (0,0 = zenith)
- Structure function binned according to orientation wrst Earth magnetic field

Geomagnetic Field Orientation

Geomagnetic Field Orientation

Conclusion

- LOFAR calibration data can be used to probe turbulent structure of the ionosphere over a long range of scales (~1-80 km)
- Diffractive scale is a measure of the ionospheric quality of the night
 - diffractive scale correlates with rms noise of the image
- Observed anisotropy in turbulent structure aligned with Earth magnetic field
 - structures elongated along magnetic field lines