# Consensus optimization: The only way forward

Sarod Yatawatta

ASTRON

The Netherlands

## Introduction

□ Modern radio telescopes (LOFAR) produce large amounts of data.

- □ Calibration: essential for correcting systematic errors (beam,ionosphere), removal of foregrounds (Epoch of Reionization).
- Big data in radio astronomy: how can we calibrate large volumes of data, with minimal cost, while maximally exploiting smoothness in time, frequency and space?

## LOFAR Deep Image



150 MHz, 2" pixels, 40  $\mu$ Jy noise, dynamic range > 150 000

## Calibration



uncalibrated image



what we want after calibration



what we don't want



we certainly don't want this, though it's cute

# **Calibration is Not Convex**



Solutions are on a 'compact' Riemannian manifold [Yatawatta, 2015]. A compact manifold does not have non-constant smooth convex functions [Udriste, 1994].

Example: phase-only calibration : solutions are on a hypersphere (compact) so not convex.

#### Simulated Example



### Simulated Example



(left) local minima, (middle) global minimum, (right) difference=left-right How can we increase the chances of getting the global minimum?

### Image before calibration



I,Q,U,V images baselines  $\leq$  250 wavelengths

### Image after calibration



I,Q,U,V calibration using baselines > 250 wavelengths

# Normal Calibration



Data distributed over a network of computers, divided into different subbands (frequencies).

Each SAGECal operates independently on data at different frequencies  $f_i$ . Solutions are only later interpolated.

## What We Want



We want a unified solution exploiting smoothness in frequency, time and space (direction in the sky). This can avoid local minima as much as possible.

But this does not work in practice: too much data, not enough memory, no accurate model to parametrize.

## **Distributed Calibration**

□ Normal calibration: each SAGECal works independently

$$\mathsf{J}_{f_i} = \arg\min_{\mathsf{J}} \ g_{f_i}(\mathsf{J})$$

□ Distributed calibration: each SAGECal appears to work independently, but actually solves

$$\{\mathsf{J}_{f_1},\mathsf{J}_{f_2},\ldots,\mathsf{Z}\} = \operatorname*{arg\,min}_{\mathsf{J}_{f_i},\ldots,\mathsf{Z}} \sum_i g_{f_i}(\mathsf{J}_{f_i})$$

subject to 
$$J_{f_i} = B_{f_i} Z$$
,  $i \in [1, P]$ 

where  $J_{f_i}$  are local parameters,  $B_{f_i}Z$  smoothing constraint across frequency, time and space.

□ Basic principle is consensus optimization : details [Tsitsiklis,1984], [Boyd et al.,2011], [Yatawatta, 2015].

### **Consensus Optimization**

Augmented Lagrangian

$$L(\mathbf{J}_{f_1}, \dots, \mathbf{Z}, \mathbf{Y}_{f_1}, \dots) = \sum_i g_{f_i}(\mathbf{J}_{f_i}) + \|\mathbf{Y}_{f_i}^H(\mathbf{J}_{f_i} - \mathbf{B}_{f_i}\mathbf{Z})\| + \frac{\rho}{2}\|\mathbf{J}_{f_i} - \mathbf{B}_{f_i}\mathbf{Z}\|^2$$

Iterative optimization with  $n = 1, 2, \ldots$ 

 $\Box$  Locally optimize to find

$$(\mathsf{J}_{f_i})^{n+1} = \arg\min_{\mathsf{J}} L_i \left(\mathsf{J}, (\mathsf{Z})^n, (\mathsf{Y}_{f_i})^n\right)$$

□ Globally find average (closed form solution)

$$(\mathsf{Z})^{n+1} = \arg\min_{\mathsf{Z}} \sum_{i} L_i \left( (\mathsf{J}_{f_i})^{n+1}, \mathsf{Z}, (\mathsf{Y}_{f_i})^n \right)$$

□ Locally update Lagrange multiplier

$$(\mathsf{Y}_{f_i})^{n+1} = (\mathsf{Y}_{f_i})^n + \rho((\mathsf{J}_{f_i})^{n+1} - \mathsf{B}_{f_i}(\mathsf{Z})^{n+1})$$

Large  $\rho$  makes the problem convex.

## **Distributed Calibration**



Information passed is much less than actual data calibrated (an order of magnitude less than other 'global' solvers).

## **Computational Time**



Scaling from LOFAR to SKA-Low, 72 to 512 stations, Linear scaling with the number of clusters (directions) calibrated.

### **512 Stations**



(left) raw data (middle) RTR (right) Nesterov's

## Conclusions

- □ Consensus optimization: can make calibration convex, thereby improving robustness.
- □ Can exploit smoothness in frequency, time and space with minimal computational cost and network communication cost.
- □ Almost linear scaling with number of directions calibrated and number of stations, almost constant cost with number of frequencies.
- $\Box$  Available at http://sagecal.sf.net .

Acknowledgments: European Research Council Advanced Grant LOFARCORE - 339743.