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Introduction

� Modern radio telescopes (LOFAR) produce large amounts of data.

� Calibration: essential for correcting systematic errors
(beam,ionosphere), removal of foregrounds (Epoch of Reionization).

� Big data in radio astronomy: how can we calibrate large volumes of
data, with minimal cost, while maximally exploiting smoothness in time,
frequency and space?
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LOFAR Deep Image

150 MHz, 2′′ pixels, 40 µJy noise, dynamic range > 150 000
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Calibration

uncalibrated image

what we want after
calibration

what we don’t want

we certainly don’t
want this, though it’s

cute
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Calibration is Not Convex

f(θ) f(θ)

θθ

Convex Not Convex

Solutions are on a ’compact’ Riemannian manifold [Yatawatta, 2015]. A
compact manifold does not have non-constant smooth convex functions
[Udriste, 1994].
Example: phase-only calibration : solutions are on a hypersphere
(compact) so not convex.
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Simulated Example

(left) raw data, (middle) local minima, (right) global minimum
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Simulated Example

(left) local minima, (middle) global minimum, (right) difference=left-right
How can we increase the chances of getting the global minimum?
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Image before calibration

I,Q,U,V images baselines ≤ 250 wavelengths
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Image after calibration

I,Q,U,V calibration using baselines > 250 wavelengths
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Normal Calibration

...............

fPf1 f2

data

SAGECal

min gP (J)min g1(J) min g2(J)

Data distributed over a network of computers, divided into different
subbands (frequencies).
Each SAGECal operates independently on data at different frequencies
fi. Solutions are only later interpolated.
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What We Want

...............

fP

min
∑

i
gi(J)

f1 f2

data

We want a unified solution exploiting smoothness in frequency,time and
space (direction in the sky). This can avoid local minima as much as
possible.
But this does not work in practice: too much data, not enough memory, no
accurate model to parametrize.
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Distributed Calibration

� Normal calibration: each SAGECal works independently

Jfi = arg min
J

gfi(J)

� Distributed calibration: each SAGECal appears to work independently,
but actually solves

{Jf1 , Jf2 , . . . ,Z} = arg min
Jfi

,...,Z

∑

i

gfi(Jfi)

subject to Jfi = BfiZ, i ∈ [1, P ]

where Jfi are local parameters, BfiZ smoothing constraint across
frequency,time and space.

� Basic principle is consensus optimization : details [Tsitsiklis,1984],
[Boyd et al.,2011], [Yatawatta, 2015].
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Consensus Optimization

Augmented Lagrangian

L(Jf1 , . . . ,Z,Yf1 , . . .) =
∑

i

gfi(Jfi)+‖YH
fi
(Jfi −BfiZ)‖+

ρ

2
‖Jfi −BfiZ‖

2

Iterative optimization with n = 1, 2, . . .

� Locally optimize to find

(Jfi)
n+1 = arg min

J

Li (J, (Z)
n, (Yfi)

n)

� Globally find average (closed form solution)

(Z)n+1 = arg min
Z

∑

i

Li

(

(Jfi)
n+1,Z, (Yfi)

n
)

� Locally update Lagrange multiplier

(Yfi)
n+1 = (Yfi)

n + ρ((Jfi)
n+1 − Bfi(Z)

n+1)

Large ρ makes the problem convex.
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Distributed Calibration

...............

fP

fusion center

min g′
2
(J) min g′

P
(J)

f1 f2

data

min g′
1
(J)

SAGECal

Information passed is much less than actual data calibrated (an order of
magnitude less than other ’global’ solvers).
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Computational Time
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Riemannian Trust Region

Nesterov’s Steepest Descent

SKA
LOFAR

Scaling from LOFAR to SKA-Low, 72 to 512 stations,
Linear scaling with the number of clusters (directions) calibrated.
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512 Stations

(left) raw data (middle) RTR (right) Nesterov’s
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Conclusions

� Consensus optimization: can make calibration convex, thereby
improving robustness.

� Can exploit smoothness in frequency, time and space with minimal
computational cost and network communication cost.

� Almost linear scaling with number of directions calibrated and number
of stations, almost constant cost with number of frequencies.

� Available at http://sagecal.sf.net .
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