

Conclusion

AWImager 2.0

Features

More robust, user friendly than awimager 1

Integrates with NRAO CASA 4.4

Multiscale wideband clean

Use your own A-term (beam) Choose different gridders

Gridding speed

Classic Gridder

Integration

Casacore 2.0 NRAO Casa 4.4 May 2015

LOFAR 2.11 June 2015

Features

More robust, user friendly than awimager 1

Integrates with NRAO CASA 4.4

Multiscale wideband clean

Pluggable / extensible

Use your own A-term (beam)

Choose different gridders

Gridding speed

visibilities / second

* benchmark to be verified

CASA

no beam

AWImager 1

'split beam': scalar beam

AWImager 2

full beam

Classic Gridder

IDG (gcc)

IDG (icc)

IDG: Image Domain Gridder Efficient implementation by Bram Veenboer (Astron / DOME)

IDG + GPU

Integration

Current status: AWImager 2 available on CITT branch on CEPs and flits IDG still in development, 'classic' gridder available and tested

Casacore 2.0

April 2015

NRAO Casa 4.4 May 2015

LOFAR 2.11

June 2015

AWimager 2 available on CEP3, next to AWImager 1

Calibration

Features

Nondirectional gain calibration in DPPP

Full Jones / Diagonal / 'CommonScalarPhase'

Use sky model or MODEL_DATA

Beam can be applied to either looks single

To be added: sliding window calibration for better S/N

Speed

Calibration part at least 10x faster than BBS

New multithreaded predict 20x faster than BBS predict Also multithreaded beam application

Memory required independent of number of sources.

Integration

Current status: DPPP gaincal available in Lofar and Loftm releases

Fast gaincal

➡ Selfcal pipeline standalone 🗸

⇒ Selfcal pipeline RO version

Facet calibration pipeline

Features

Nondirectional gain calibration in DPPP

Full Jones / Diagonal / 'CommonScalarPhase'

Use sky model or MODEL_DATA

Beam can be applied to either (only single direction for MODEL_DATA)

To be added: sliding window calibration for better S/N

Speed

Calibration part at least 10x faster than BBS

New multithreaded predict 20x faster than BBS predict Also multithreaded beam application

Memory required independent of number of sources.

Integration

Current status: DPPP gaincal available in Lofar and LofIm releases Fast predict only on a branch, to be integrated

Fast gaincal

Facet calibration pipeline

Selfcal

Standalone

Many options in selfcal.py

Tested and used by many astronomers!

Maintained on github for fast development cycles

Uses LSMTool for graphical feedback plots

https://github.com/nicolasvilchez/pvselfca

RO selfcal pipeline

Black box version developed in RO pipeline framework

Current status: in commissioning

The RO pipeline framework is (too) hard to program

Standalone

Many options in selfcal.py

Tested and used by many astronomers!

Maintained on github for fast development cycles

Uses LSMTool for graphical feedback plots

https://github.com/nicolasvilchez/pyselfcal

RO selfcal pipeline

Black box version developed in RO pipeline framework

Current status: in commissioning

The RO pipeline framework is (too) hard to program

Infrastructure

Generic Pipeline framework

Extension to the existing Lofar Pipeline Framework used by RO.

Create pipelines by writing down the steps as a parset.

Pipeline framework takes care of distributing steps over nodes.

ph_shift.control.type=dppp ph_shift.argument.steps=(phaseshift) ph_shift.argument.phaseshift.phasecenter= .

myscript.control.executable=-dijkema/dostuff.py myscript.arguments=[-a, -l, mapfile]

All programs can be trivially embedded sagecal, Cohjones, wsclean, excon, losoto, .

Other tools

LSMTool: https://github.com/darafferty/LSMTool Tool for manipulating sky models

LoSoTo: https://github.com/revoltek/losoto
Set of tools for working with solutions (e.g. clock/tec separation)

SmartDemix DPPP step: Currently being tested with new data set

Generic Pipeline framework

Extension to the existing Lofar Pipeline Framework used by RO.

Create pipelines by writing down the steps as a parset.

Pipeline framework takes care of distributing steps over nodes.

pipeline.steps=[ph_shift , myscript , wsclean]

ph_shift.control.type=dppp ph_shift.argument.steps=[phaseshift] ph_shift.argument.phaseshift.phasecenter= ...

myscript.control.executable=~dijkema/dostuff.py myscript.arguments=[-a, -f, mapfile]

All programs can be trivially embedded sagecal, Cohjones, wsclean, excon, losoto, ...

Other tools

LSMTool: https://github.com/darafferty/LSMTool
Tool for manipulating sky models

LoSoTo: https://github.com/revoltek/losoto
Set of tools for working with solutions (e.g. clock/tec separation)

SmartDemix DPPP step: Currently being tested with new data set

Facet Calibration

Development

Scheme developed by Reinout van Weeren.

Tested by Wendy Williams on Boötes field.

Further developed at Leiden Workshop 20-24 April 15

- May Antillage - Cong - Cong

works for 7 (?)

Integration

Status

Current scripts (in development) on github.

CITT will deliver a mostly automated version of this scheme in the generic pipeline framework.

Implementation in pipeline framework to be wrapped up in CITT work week (next week).

Results (prelim.)

Detail (30 x 30 arcmin) of Herschel-ATLAS NGP Courtesy of Martin Hardcastle (Univ. of Hertfordshire)

Development

Scheme developed by Reinout van Weeren.

works for 1

Tested by Wendy Williams on Boötes field.

works for 2

Further developed at Leiden Workshop 20-24 April '15

Organized by Tim Shimwell Wendy Williams & Reinout van Weeren

- Wendy Williams Boötes
- George Heald NGC 5775
- · Martin Hardcastle H-ATLAS NW
- Sarrvesh Sridhar M101
- · Elizabeth Mahony Lockman Hole
- Jose Sabater Montes ELAIS-N1
- Tim Shimwell A2034
- Reinout van Weeren A2256
- Duy Hoang and Edwin Retana Montenegro Boötes
- Francesco de Gasperin Toothbrush cluster; LBA
- David Rafferty & Stefan Fröhlich CITT pipeline / framework
- Tammo Jan Dijkema DPPP / general dev. support

works for 7 (?)

Leiden Workshop

Organized by Tim Shimwell, Wendy Williams & Reinout van Weeren

- Wendy Williams Boötes
- George Heald NGC 5775
- Martin Hardcastle H-ATLAS NW
- Sarrvesh Sridhar M101
- Elizabeth Mahony Lockman Hole
- Jose Sabater Montes ELAIS-N1
- Tim Shimwell A2034
- Reinout van Weeren A2256
- Duy Hoang and Edwin Retana Montenegro Boötes
- Francesco de Gasperin Toothbrush cluster; LBA
- David Rafferty & Stefan Fröhlich CITT pipeline / framework
 Pregammo Jan Dijkema DPPP / general dev. support

Integration

Results (prelim.)

Global phase-cal, removal of bright sources

10 arcsec resolution

Facet calibration

6 arcsec resolution

Detail (30 x 30 arcmin) of Herschel-ATLAS NGP Courtesy of Martin Hardcastle (Univ. of Hertfordshire)

Status

Current scripts (in development) on github.

https://github.com/tammojan/facet-calibration

CITT will deliver a mostly automated version of this scheme in the generic pipeline framework.

Implementation in pipeline framework to be wrapped up in CITT work week (next week).

Future

Testing

Community engagement is (has been) key to success

Great input from three busy weeks organized by CITT

New pipeline framework will allow faster feedback

Documentation

Lofar wiki (left sidebar, CITT)

Cookbook

Facet Calibration Manual

CITT2 (?)

Follow-up project is being considered

Implementation / integration

LBA-tuned pipeline

GPU enhancements

Calibration improvements

Testing

Community engagement is (has been) key to success

Great input from three busy weeks organized by CITT

New pipeline framework will allow faster feedback

Documentation

Lofar wiki (left sidebar, CITT)

http://www.lofar.org/operations/doku.php?id=tigerteam:start

Cookbook

Facet Calibration Manual

CITT2 (?)

Follow-up project is being considered

Implementation / integration

LBA-tuned pipeline

GPU enhancements

Calibration improvements

Conclusion

Main deliverable of CITT is a user-friendly version of facet calibration procedure.

Pipeline draws together progress in all other CITT areas, so cumulative result of work across the team.

CITT wraps up in July 2015.

Conclusion

