

KSP Status Report

Solar Physics and Space Weather with LOFAR

Gottfried Mann Leibniz-Institut für Astrophysik Potsdam (AIP) An der Sternwarte 16, D-14482 Potsdam, Germany e-mail: GMann@aip.de

Bundesministerium für Bildung und Forschung

Management Structure

	Name	Affiliation	Country		
PI	Prof. Dr. Gottfried Mann	AIP	Germany		
core members	Dr. Mario Mark Bisi Dr. Bartosz Dabrowski	Univ. Aberystwyth Univ. Olsztyn	UK Poland		
	Dr. Richard Fallows	ASTRON	Netherlands		
	Dr. Peter Gallagher	Trinity College Dublin	Ireland		
	Dr. Alain Kerdraon	Obs. de Paris-Meudon	France		
	Dr. Alexander Konovalenko	Institute of Radio Astronomy	Ukraine		
	Dr. Jasmina Magdalenic	Royal Obs. of Belgium	Belgium		
	Dr. Alec McKinnon	Univ. Glasgow	UK		
	Prof. Dr. Helmut Rucker	IWF Graz	Austria		
	Prof. Dr. Bo Thide	Univ. Uppsala	Sweden		
(project manager)	Dr. Christian Vocks	AIP	Germany		
ordinary members	Dr. Jens Berdermann	DLR Neustrelitz	Germany		
	Frank Breitling	AIP	Germany	0	
	Eoin Carley	Trinity College Dublin	Ireland	3	
	Dr. Harry Enke	AIP	Germany		
	Dr. Norbert Jakowski	DLR Neustrelitz	Germany		
	Dr. Eduard Kontar	Univ. Glasgow	UK		
	Prof. Dr. Andrzej Krankowski	Univ. Olsztyn	Poland		
	Dr. Christophe Marqué	Royal Obs. of Belgium	Belgium		
	Diana Morosan	Trinity College Dublin	Ireland		
	Dr. Jürgen Rendtel	AIP	Germany		
	Dr. Hamish Reid	Univ. Glasgow	UK		
	Pietro Zucca	Trinity College Dublin	Ireland		
associated memb.	Dr. Philippa Browning	Univ. Manchester	UK		
	Prof. Dr. Carsten Denker	AIP	Germany		
	Dr. Lyndsay Fletcher	Univ. Glasgow	UK		
	Prof. Dr. Arnold Hanslmeier	Univ. Graz	Austria		
	Dr. Matthias Hoeft	Thür. LSW Tautenburg	Germany		
	Dr. Karl-Ludwig Klein	Obs. de Paris-Meudon	France		
	Dr. Hanna Rothkaehl	SRC Warsaw	Poland		
	Dr. Astrid Veronig	Univ. Graz	Austria		
	Dr. Alexander Warmuth	AIP	Germany		

32 members of 10 countries

Zandvoort, April 2016

Funding

- by German government: D-LOFAR III
 - 230 k€ for 3 years (Frank Breitling) 07/2014 – 06/2017
- by Irish government:
- Diana Morosan
- Pietro Zucca
- by UK government: Hamish Reid
- by AIP operation costs:
- ≈ 80 k€ for ASTRON
- ≈ 35 k€ for costs
- <u>≈ 15 k€ data link</u>
- ≈ 120 k€ in total per year
- 1 staff position (Christian Vocks LOFAR scientist at AIP)

KSP Workshops

Oct. 5/6, 2006	
May 6-7, 2014	
May 26/27, 2015	
Oct./Nov.(?), 2016	

http://www.aip.de/groups/osra/german/de_lofar.html

AIP

Results of 2015/16

- development of the solar imaging pipeline
 - simultaneous dynamic radio spectra from imaging data
 - studying fast electron propagation (Mann et al. in rev. proc.)
 - studying of S bursts (Morosan et al.: 2015, A&A 580, 65)
 - studying quiet Sun (radial density profiles above coronal holes)
 (→ talk by C. Vocks at LOFAR Science Meeting (Vocks et al.: 2016, A&A in prep.))
 - studying of the ionospheric influences (Fallows et al.: 2016, ApJ in rev. proc.)
 - submission of proposals (for C 5 & 6)
 - establishment of the LOFAR Solar Data Center (LSDC) at AIP: http://lsdc.aip.de

About Images Sp	ectra LOFAR SOLAR DATA CENTER
About	
	LSDC) is an archive of solar radio data by LOFAR in the frequency range from 30 - 240 Mhz. It provides access to LOFAR images, by the LOFAR Solar Key Science Project (KSP) contributed through the Leibniz Institute for Astrophysics Potsdam (AIP) to the solar nunity.
Data Access	
Zandvoort, April 2016	Status of the LOFAR KSP

Proposals for Cycle 6

LC6_001: Monitoring Scintillations above LOFAR (PI: R. Fallows)

LC6_002: Interferometric Imaging Observations of the Sun with LOFAR

(PI: G. Mann, C. Vocks, M. Bisi, P. Gallagher, A. Kerdraon, J. Magdalenic, A. Mac Kinnon, H. Rucker, B. Thide, A. Konovalenko, C. Marque, E. Kontar, B. Dabrowski, A. Krankowski, H. Reid)

(common proposal of solar KSP)

scientific topics

- electron acceleration at coronal shocks
- probing the density of the high corona and near interplanetary space with type III bursts
- studying the nature of noise storms
- studying of the nature of S bursts
- radio signatures of CME launch and propagation
- backup plan: Structure of the quiet solar corona

Recent Solar Observations with LOFAR

type III bursttype II burst

covering a large range of the corona

 $\begin{array}{rrr} 80 \mbox{ MHz} & \rightarrow & 1.42 \mbox{ R}_{\rm S} \\ 10 \mbox{ MHz} & \rightarrow & 2.52 \mbox{ R}_{\rm S} \\ (see \mbox{ Mann et al., 1999}) \end{array}$

note: $r_c = 6.9 R_S$ $\rightarrow f > 10 MHz$ is in the range of the hydrostatic corona

Zandvoort, April 2016

7

Type III Burst II

- type III burst radio signature of an electron beam travelling along magnetic field lines through the corona (see Wild et al., 1950)
- type III burst at 06:38:36 UT

f	ΔΙ	t	r	V
MHz	mm	S	10 ⁶ km	km/s
50	12.5	6.098	1.106	
40	14.5	7.073	1.166	61,538
30	17.5	8.537	1.253	59,426
20	22.5	10.976	1.401	60,680

The type III burst is generated by a nearly mono-energetic electron beam. (velocity = $60,500 \text{ km/s} = 0.2 \text{ c}; \approx 10 \text{ keV}$)

• type II radio burst – radio signature of a shock wave travelling through the corona

(see e.g. Mann, 1995)

- fundamental-harmonic structure at 06:57 UT: F: 15 MHz 1 H: ≈ 30 MHz 2 H: ≈ 45 MHz
 - 4 H: ≈ 60 MHz
- drift of fundamental lane: start: 06:49:30 UT at 27 MHz end: 06:53:00 UT at 20 MHz
- Alfvén speed (at 23.5 MHz) = 467 km/s
 - $r = 1.338 \cdot 10^{6} \text{ km}$
 - N_e = 6.851 · 106 cm-3
 - B = 0.56 G

- → drift rate: 0.033 MHz/s (cf. Mann, 1995) mean velocity: 533 km/s
- → Alfvén-Mach number 1.14 (typical for type II related shocks)

Problems Which Should be Discussed

- LOFAR observations of the Sun
 - The Sun is a special target !!!
 - regularly observations of the Sun by spacecraft Hinode, RHESSI, and SDO
 - We must wait up to the Sun provides us an event, which we can scientificly study.
 - \rightarrow A long Term Proposal would be important for the solar KSP.
 - external triggering (→ solar activity, e.g.: www.solarmonitor.org)
 - * alert time to ASTRON (3 days or 1 hour) ???
 - * Could a single LOFAR station be used only for solar observations i.e. as a spectrometer ?

Solar Activity

Thank you for your attention!

This work was done in collaboration with the solar KSP and LOFAR/ASTRON team

Status of the LOFAR KSP