

Giant radio galaxies with LOFAR

Emanuela Orru' AST(RON

Outline

- Giant Radio Galaxies
- GRG working group
- LOFAR resuls
- GRG in Tier 1 fields

Giant radio galaxies

- * projected linear size > 1 Mpc
- * old radio galaxies evolved in a low density medium: low energy electrons
- * information over large portions of IGM B in low density environment
- * energy transport at Mpc scales
- * 200 known GRG potentially biased
- * highly polarized at high frequencies
- * good calibrators in polarization RM grid

GRG Working Group

Chair . E. Orru'- P. Alexander - M. Jamrozy - V. Heesen - E. Middelberg - R. Pizzo - J. Riley - G. de Bruyn - M. Birkinshaw - L. Saripalli - T. Cantwell - D. Mulcahy - A. Bonafede - A. Scaife - R. Morganti -J. Croston -A.Shulevsky - T. Shimwell, C. Roskowinski, P. Bartel. New: Pratik Dabhade

* Joined effort of MKSP & Nearby AGN (Chair R. Morganti)

- * Study of interesting targets multi-frequency data available
- * Long term plan: synergy with SKSP search GRGs in survey fields.
- * One telecon once per month
- * Common goal obtain good total intensity image and run RM synthesis on each field.
- * Overlap with Nearby galaxies and Galactic foregrounds WGs

NGC 6251

z=0.024710

* Counter---jet Visible at HBA
frequencies
* Diffuse extension to northern lobe as
visible at these frequencies
* Direction dependent calibration
necessary to reduce the noise and artifacts
in the image

NGC 6251

z=0.024710

frequencies * Diffuse extension to northern lobe as visible at these frequencies * Direction dependent calibration necessary to reduce the noise and artifacts in the image

3C 31

*z=0.0169

* 3C31 is a Giant with Lofar L=1.1 Mpc

* Bridge emission between the lobes Courtesy of V. Heesen

NGC 379

/ NGC 386 NGC 388 ~

LOFAR HBA 145 MHz CHANDRA X-ray SDSS r'+g'+u'-band NGC 380 NGC 383 / 382 2 Mpc

Arp 331 chain of

NGC 385

- NGC 384

Heesen, Croston, et al. 2015, in prep.

with Jr model.

3C 31

*z=0.0169

* 3C31 is a Giant with Lofar L=1.1 Mpc

* Bridge emission between the lobes

> *Spectral index power-law up to 100 kpc (jets/lobes), exponential drop of emission > 200 kpc from nucleus (tails).

*Spectral steepening modeled with advective cosmic-ray model.

*Magnetic field strength in radio tails 1– 10μ G, with ~ 3μ G on average. Agreement with JP model.

* Bridge emission between the lobes

*Spectral index power-law up to 100 kpc (jets/lobes), exponential drop of emission > 200 kpc from nucleus (tails).

*Spectral steepening modeled with advective cosmic-ray model.

*Magnetic field strength in radio tails 1– 10 μ G, with ~3 μ G on average. Agreement with JP model.

LBA

* One SB. After removing CasA using Sagecal. *Needs more SBs for selfcal with Consensus Optimization

Subtract CasA no selfcal

courtesy of S. Yatawatta

Subclass of GRG are Double-double RG

DEF: DDRG consists of a pair of double radio sources with a common centre

Vormalised flux

Heliocentric velocity (km/s

(Schoenmakers et al. 2000)

Are the evidence of recurrent jet activity in AGN

- * well aligned within 10 deg or X-shaped, inner edgebrightened
- * outer no hotspot but one case
- * moderate redshift (selection effect?)
- * linear size ~ Mpc, no frequent in small RG samples
- inner doubles in DDRGs has an FRII structure although its luminosity belongs to the FRI category or lie in the borderline of the FRI/FRII classification
 - HI absorption observed in few DDRG
- * small RM

3C 236 Courtesy of A. Shulevski

CSS source in the center DDRG LOFAR HBA frequency = 144 MHz Bandwidth = 12 MHz noise = 7 mJy/beam resolution = 50 X39 arcsec

LOFAR/WRST spectral index map Injection index values in lobes

Spectral curvature map Older plasm in the inner NW lobe

3C 236 Courtesy of A. Shulevski

J2000 Right Ascension

LOFAR HBA

- * no detection of the core (GPS)
- * 4 components resolved
- * new features elongation of inner lobes
- * South-inner misalignment of elongation w.r.t the outer lobe
- * The fit of the CI was not satisfactory for the inner lobes. We fit a
 CI + a PL to take into account for the new feature
- * The outer since the are expected to be powered off we fitted the CIoff

New features of low

Spectral studies suggest due to a previous jet

brightness emission.

Polarization

*To study the IGM properties.

* Detection lower than expected due to various reasons:

* confirmed the RM found at hight frequencies.

*Plan to create RM-grid for each field.

Cross match catalogues of known GRG with Tier 1 pointings.

Catalogue courtesy of M. Jamrozy Images courtesy of T. Shimwell.

(1) <u>200 GRG unpublished catalogue cross matched</u> <u>with 60 survey fields</u>

- found 2 GRG
- not same quality due to artifacts direction independent calibration.
- (2) <u>match the catalogue of known GRG to the 200</u> <u>pointings</u>
 - found 28 GRG
 - imaged 1 SB
 - detection most of the cases, some fields very poor quality FACTOR will improve them.
 - (3) If we find interesting sources these will have the priority to be processed with FACTOR.
 - availability of radio data at higher frequencies
 - environmental study based on X-ray data.

Cross match catalogues of known GRG with Tier 1 pointings

Catalogue courtesy of M. Jamrozy Images courtesy of T. Shimwell.

(1) <u>200 GRG unpublished catalog</u> with 60 survey fields

- found 2 GRG
- not same quality due to ar independent calibration.
- (2) <u>match the catalogue of know</u> <u>pointings</u>
 - found 28 GRG
 - imaged 1 SB
 - detection most of the cases poor quality - FACTOR with
 - (3) If we find interesting source the priority to be processed v
 - availability of radio data af
 - environmental study basec

Cross match catalogues of known GRG with Tier 1 pointings.

Catalogue courtesy of M. Jamrozy Images courtesy of T. Shimwell.

(1) <u>200 GRG unpublished catalogue cross matched</u> <u>with 60 survey fields</u>

- found 2 GRG
- not same quality due to artifacts direction independent calibration.
- (2) <u>match the catalogue of known GRG to the 200</u> <u>pointings</u>
 - found 28 GRG
 - imaged 1 SB
 - detection most of the cases, some fields very poor quality FACTOR will improve them.
 - (3) If we find interesting sources these will have the priority to be processed with FACTOR.
 - availability of radio data at higher frequencies
 - environmental study based on X-ray data.

New-GRGs from Tier 1

Pratik Dabhade (IUCAA, India)

- * few sample of GRGs found via visual inspection of Tier 1 fields.
- * resolution 20", rms ~ 0.3-0.8 mJy/beam

Challenges

- computing facilities
- man power (technical/software people)
- initial catalogue
- artifact free images
- detection of faint and extended features from catalogue by source founding (new method recently published)
- tools for standard assessment of results
- search and identification of the object on other surveys, redshifts, follow ups etc.

Conclusions and future plans

*The study of GRG at low frequency reveals interesting properties of the AGN low energy particle population and magnetic fields.

*The study of DDRG provides information about multiple jet activity keeping track of AGNs duty cycle up to very "old particles"

*The GRG working group:

* is concentrating its activity on single targeted observations

*in the long term cross match with GRG catalogues

*exploitation of Survey fields to compile new catalogues of GRG and DDRG - more difficult blind search/detection of new GRG and DDRG