

Observing Young Stellar Objects at 150 MHz with LOFAR

Colm Coughlan

Dublin Institute for Advanced Studies

Collaborators:

Rachael Ainsworth, Tom Ray (DIAS), Jochen Eisloffel, Matthias Hoeft, Alex Drabent (TLS), Anna Scaife (UMan), Dave Green (Cam).

YSOs at Radio Frequencies

Jets from protostars impacting into the surrounding medium produce Herbig-Haro objects in the optical

Radio companions to these outflows can be detected

Emission mechanism: Free-free emission

YSO spectral energy distribution

GMRT observations

Giant Metrewave Radio Telescope, Pune, India

3 target YSOs: T Tau, DG Tau, L1551 IRS 5

30 45m dishes

Observations at 325 and 610 MHz

Ainsworth et al. (2016)

Resolution ~ 5-6 arcsec at 610 MHz

Source	Class	J2000.0 Coordinates		ν	λ	Obs. time	FWHM, PA	$\sigma_{ m rms}$	
		α (^{h m s})	δ (°′″)	(MHz)	(cm)	(hrs.)	("×", °)	$(\mu Jy beam^{-1})$	
L1551 IRS 5	Ι	04 31 34.1	+18 08 04.8	325	90	6.0	11.4 × 9.5, -88.5	151	
				610	50	2.2	$6.2 \times 4.9, 76.5$	49	
T Tau	II	04 21 59.4	+19 32 06.4	325	90	3.3	10.8 × 9.5, -81.6	103	
				610	50	2.2	6.0×5.0, 83.8	45	
DG Tau	II	04 27 04.7	+26 06 16.3	325	90	6.0	11.6 × 9.2, 79.6	127	
				610	50	2.2	$6.5 \times 5.2, 74.0$	80	

T Tau at 323 and 608 MHz

Ainsworth et al. (2016)

Spectral Energy Distribution

GMRT data combined with data from literature

SED traces both the disk and outflow

- Disk at high frequency
- YSO jet at low frequency

SED fitted with two power laws using a joint likelihood Markov Chain Monte Carlo method

$\left(\frac{S_{\nu}}{\mathrm{mJy}}\right) = K_{323\mathrm{MHz}} \left(\frac{\nu}{323\mathrm{MHz}}\right)^{\alpha} + K_{100\mathrm{GHz}} \left(\frac{\nu}{100\mathrm{GHz}}\right)^{\alpha'}$								
Source	<i>K</i> _{323 MHz}	α	$K_{100 m GHz}$	β				
	(mJy)		(mJy)					
L1551 IRS 5	1.61 ± 0.10	0.23 ± 0.02	120.58 ± 3.63	1.31 ± 0.05				
T Tau	3.43 ± 0.08	0.17 ± 0.01	28.16 ± 1.15	0.56 ± 0.03				
DG Tau	0.55 ± 0.05	0.20 ± 0.03	34.54 ± 1.08	0.55 ± 0.03				

Ainsworth et al. (2016)

Free-free spectrum still has not turned over

Modeling YSO free-free emission

Modeling YSO free-free emission

Model parameters derived using fit to SED

SED still optically thin

- Derived parameters not necessarily well-constrained

Can estimate the turnover frequency:

$$\tau_{\nu} = 8.235 \times 10^{-2} \left(\frac{T_{\rm e}}{\rm K}\right)^{-1.35} \left(\frac{\nu}{\rm GHz}\right)^{-2.1} \left(\frac{EM}{\rm pc\,cm^{-6}}\right)$$

Ainsworth et al. (2016)

Source	$K_{323\mathrm{MHz}}$	α	$K_{100\mathrm{GHz}}$	β	θ	n _e	M _{ion}	EM	ν_0
	(mJy)		(mJy)		('')	(cm^{-3})	(M _☉)	$(pc cm^{-6})$	(MHz)
L1551 IRS 5	1.61 ± 0.10	0.23 ± 0.02	120.58 ± 3.63	1.31 ± 0.05	4.8	2.2×10^{3}	3.1×10^{-6}	2.3×10^{4}	105
T Tau	3.43 ± 0.08	0.17 ± 0.01	28.16 ± 1.15	0.56 ± 0.03	2.9	6.8×10^{3}	2.2×10^{-6}	1.3×10^{5}	226
DG Tau	0.55 ± 0.05	0.20 ± 0.03	34.54 ± 1.08	0.55 ± 0.03	5.3	1.1×10^{3}	2.1×10^{-6}	6.4×10^{3}	59

LOFAR Observations

Data from LOFAR cycle one (November 2013)

8 hours of high band observations

3C147 as flux calibrator ("bookend")

Averaged to 5 sec, 4 ch per SB.

Reduced core and remote data on local (DIAS and ICHEC) resources

T Tau LOFAR reduction strategy

250 subbands centred on 149 MHz ~ 2 TB

- Pre-facet calibration (prefactor)
 - Flux calibration (ignoring core-core baselines)
 - Clock TEC separation
 - Phase calibration with initial GSM
- Phase only direction-independent self-calibration
 - Image 5 10SB (2 MHz) chunks at regular intervals
 - Build multi-frequency model of the sky
 - Apply direction independent phase calibration
- SAGECal source subtraction
 - Bright sources subtracted using SAGECal (robust mode)

Wide-band, wide-field imaging in CASA

T Tau at 149 MHz

T Tau at 149 MHz

4.75 sigma detection

Partially resolved – seems to agree with 608 MHz GMRT extension

Need good estimates of systematic error in flux scale due to beam effects

Compared first and last 3C147 scans to estimate errors: ~ 12% error

Final integrated flux:

1.90 +- 0.47 mJy

LOFAR (colour) with Ainsworth et al. (2016)_608 Mhz contours

Declination

J2000

J2000 Right Ascension Peak: 0.95 mJy/Beam Local RMS: 0.2 mJy/Beam Integrated: 1.9 mJy Deconvolved size: 8.13x2.15 arcsec Convolving beam: 6.01x4.90 arcsec

Improved spectral modeling

Observing YSOs at 150 MHz with LOFAR

Summary

- Low frequency observations of YSO jets help constrain important jet parameters
- Ideally need to resolve the YSO, as well as estimate its turnover frequency
- LOFAR offers a unique opportunity to do both
- T Tau is the first YSO to be detected with LOFAR
- Low frequency data is improving quality of modeled parameters