LOFAR's role in searching for EM counterparts to compact binary mergers detected by ALIGO

Antonia Rowlinson

6th April 2016

Thanks to Jess Broderick & the LOFAR GW follow-up team

Compact binary mergers

Expected sources:

- Neutron star binaries
- Neutron star + Black hole
- Black hole binaries

Detectable as:

- Short gamma-ray bursts (GRBs)?
- Gravitational wave sources

Expected emission (with 1 or more neutron stars)

Detection of GW 150914

- Two black holes
- Distance of ~400 Mpc
- Masses of 36 and 29 M_☉
- 3 M_☉ of energy released

Abbott et al. (2016a)

Electromagnetic follow-up partners

- Hold Memorandums of Understanding (MoUs) with the LIGO-VIRGO Collaboration (LVC):
 - LVC communicate triggers
 - We communicate follow-up completed to the collaboration
 - Confidential for the first 5 triggers
 - 63 teams hold MoUs
- Joint publication from LVC and partners to describe the large scale follow-up of GW150914: Abbott et al. (2016b)
 - 1562 authors including the LOFAR follow-up team
 - 25 teams conducted follow up

Multi-wavelength follow-up

- Three wide-field radio telescopes followed up this trigger:
 - LOFAR (DDT time requested, P.I. Jess Broderick)
 - MWA
 - ASKAP

Multi-wavelength follow-up

- Majority of localisation region covered at each wavelength
- Follow-up teams used a range of strategies

Abbott et al. (2016b)

LOFAR follow-up of GW 150914

- Mosaic of 8 SAPs at 145 MHz with a bandwidth of 11.9 MHz
- Resolution 50"
- RMS noise ~2.5 mJy and >2000 sources
- Contours: cWB probability map
- Timescales of 1 week, 1 month and 3 months

Expected transient rates

- Surveyed ~50 square degrees on a 3 month timescale with 6 sensitivity of 15 mJy at 145 MHz
- We expect <14 transients in the field

Transient and Variability Analysis

- Processed using the
 LOFAR Transients
 Pipeline (Swinbank et al. 2015)
- Two variability parameters measured for all sources
- No convincing transients detected above 6*o*
- 1 variable source
 (scintillating pulsar)

Summary

- Gravitational waves have been detected from a binary black hole merger although very uncertain expectations for EM counterparts
- LOFAR is one of 3 wide field radio facilities currently chasing these events (and only one in the Northern Hemisphere)
- Only a matter of time to get a neutron star merger (and known EM counterparts)
- LOFAR can chase the late-time synchrotron, but key discovery space is for coherent emission requiring a rapid response mode

SPARE SLIDES

Variable source: PSR B0834+06

A possible associated Short GRB???

 Typically expect NO EM-counterpart from clean black hole – black hole mergers, but many theories are appearing saying otherwise and a possible EM-counterpart detection...

Maybe late-time low frequency emission from BH-BH mergers?

150 MHz lightcurves predicted assuming a typical (but optimistic) synchrotron afterglow following a GRB

Morsony, Workman & Ryan (2016)

Detection of 2 black holes merging

- Distance of ~400 Mpc
- Masses of 36 and 29 M_{\odot}
- 3 M_{\odot} of energy released
- Final remnant mass 62 M_{\odot} Abbott et al. (2016)

