Universität Bielefeld

IISM studies with low-frequency pulsar observations using GLOW

Ann-Sofie Bak Nielsen Max Planck Institute for Radio Astronomy & Bielefeld Universität

GLOW

Pulsar observing campaign

- Weekly observations with the 6 German stations of LOFAR
- HBAs (~110-240 MHz)
- ~137 pulsars (~30 bi-weekly)
- >6 years of time span
- >80 TB of "folded" pulsar data
 - Several "special modes" of observation (high frequency resolution, single pulses, etc.)
 - Especially useful for studies of magnetoionic media

Copyright: M. Biermann

GLOW single station science

People:

- * J. Verbiest, J. Donner, M.A. Krishnakumar, A. Bak Nielsen,
 - C. Tiburzi, S. Osłowski, N. Porayko, O. Wucknitz, R. Main,
 - L. Künkel, Z. Wu, P. Bergjann,

Projects:

- * Dispersion measure
- * Scintillation time series
- * Scintillation arcs
- * Scatter-broadening and DM correlation

*Solar wind

See C. Tiburzi Talk

Chromatic dispersion measure

- * DM usually not assumed to be frequency dependent
- * DM integrated electron density
- * PSRJ2219+4754
- * DM time series measured at upper and lower half of LOFAR band
- * DM variations in frequency
- * Lower frequency smoother
 - Goes through larger volume of IISM
- * Need to understand chromatic DM to correct for DM when timing

Donner, J. et al. 2019, accepted for publication

DM of Millisecond Pulsars

- * MSP DM project
- * LOFAR core + GLOW
- * Average DM of MSPs
- * Features/properties:
 - * Solar wind (J0034-0534
 & J2317+1439)
 - * IISM (J0218, J0742, J1552, J2317 (core))
- * J1640+2224 very few variations, still DM variation
- * DM variations are on a variety of scales and shapes
- * Object: Use highly precise DM measurements to improve timing of EPTA pulsars

Donner, J. et al, in prep

Scintillation arcs

- * Dynamic Spectra
- * Diffractive scintillation pattern
- * LOFAR data shows very detailed scintillation pattern

Scintillation arcs

- * 2D fourier transform of dynamic spectrum - Scint. Arcs
- * Scint. Arcs discovered in 1986, not until 2000s origin known
- * Representation of doppler shifted and reflected pulse signal
- * Reflected through filament in IISM
- * Arcs fuzzy in LOFAR scattering disc
- * Information about the physics of the scattering screen/IISM structure
- * Not seen for MSPs

Collaboration with Dan Stinebring

J1136+1551 MJD:57101.98 Duration:9.82h Frequency:125.00MHz Bandwith:10.00MHz

Künkel & Wu

Scintillation time series

- * Clear correlation between DM and scintillation parameters
 - * Only seen in one pulsar
 - * Checking claim from literature
- * Scintillation parameters for J0837+0610 (top plots)
- * DM off-set by 100 days
- * Not clear why this correlation is present
- * Observations between 08/05-2015 to 24/09-2016

Bergjann, Master thesis in prep.

Scatter broadening - DM correlation

- * Scatter-broadening and DM variations
- * PSRJ2113+4644
- * Strongly correlated variation
- * Scatter-broadening:
 - * Broadening of pulse signal with frequency
 - Fitting a Gaussian +
 exponential decay function to
 - * HBA band
- * DM for each observation

Krishnakumar M.A., initial results

Scatter broadening - DM correlation

- * In line of sight of North America and Pelican nebulae (d~700pc)
- * Pulsar PX distance is 4kpc
- * Nebulae is ionised by O-type star and is strongly magnetised
- * Cause variations seen in DM
- * WISE infrared image

Krishnakumar M.A., initial results

Recent papers from GLOW

- * Shaifullah et al. 2018 (Multi frequency behaviour of "Swooshing" pulsar, PSR J0922+0638.)
- * Porayko et al. 2019 (ionospheric rotation measure)
- * Donner et al. 2019 (chromatic dispersion measure)
- * Tiburzi et al. 2019 (Solar wind)

Thank you!

Extra - scatter broad. - DM corr.

