The LOFAR Surveys Deep Fields

Philip Best IfA Edinburgh

In collaboration with the LOFAR Surveys KSP Special credits:

- Special credits:
- (Radio) Cyril Tasse, Tim Shimwell, Pepe Sabater, Martin Hardcastle
- (Multi-wavelength) Rohit Kondapally, Ken Duncan

LOFAR Surveys: Multi-tiered approach

Tier 1: "Large Area" (LoTSS / LoLSS; Shimwell, de Gasperin):

- all northern sky at 60 and 150 MHz, to S_{150MHz} < 100µJy/bm rms
 - finding rare objects (e.g. z>7 RGs, cluster halos, strong lenses)
 - large samples of nearby AGN/SFGs
 - cosmology (e.g. Integrated Sachs-Wolfe effect, weak lensing)
- Tier 2: "Medium Deep":
 - few 100 sq. deg at 60 and 150 MHz to S_{150MHz} ~ 25µJy/bm rms
 - properties & evolution of SF galaxies, radio-loud & radio-quiet AGN
 - localise & identify sources from Herschel, SCUBA-2, Spitzer, etc
 - deep studies of nearby galaxies and clusters

Tier 3: "Ultra-deep":

- ~70 square degrees, 150MHz only, to ~10µJy rms
 - deep SF & RQ AGN studies; variation with z, environment, host gal
 - sufficient sky area to sample all environments at high-z.

LOFAR HBA compared to other surveys

Progress to Tier 2/3 in 'famous fields'

- Continuing to progress towards deeper Tier 2/3 depth data in the extragalactic fields with best degree-scale multi-wavelength data
 - Elais-N1, Bootes, Lockman Hole
- Calibration quality still good: noise decreasing as sqrt(t). •

80 Hours

150

50

, μJy beam⁻¹

Data acquisition in deep fields

Field	Data before Cycle 10	Allocated time Cycle 10-13	Analysed for Data Release 1	Depth (µJy/bm)
Boötes	80 hrs	80 hrs	80 hrs	~37
Elais-N1	180 hrs	160 hrs	170 hrs	~20
Lockman Hole	72 hrs	80 hrs	112 hrs	~25

Imaging in Elais-N1 detects 33k objects over central 7 deg² of field (nearly 5000 per deg²) – seven times the LoTSS source density!

.Elais-N1: 20µJy/bm rms

5 arcmin

'Fireworks' region

Previous image (8 hrs)

'Fireworks' region

Previous image (8 hrs)

New image

Optical & multi-wavelength data

Radio data alone provides limited science.

Critically dependent on multi-wavelength data to provide:

- host galaxy identifications
- source classifications (AGN/SF/etc)
- photometric redshifts
- galaxy properties (mass, SFR, etc)

Elais-N1, Boötes and Lockman hole have deep multi-wavelength data over ~10 deg² regions

- optical (e.g. ugrizy bands)
- near-infrared (J,K, 3.6µm, 4.5µm)
- mid-infrared (5.8µm, 8µm, 24µm)
- far-infrared (Herschel bands)

 $b = \frac{12}{5} = \frac{12}$

We have performed matched-aperture forced photometry

Host galaxy identification

Follow an adapted process from LoTSS DR1: (Wendy's talk)

- use automated statistical techniques where possible
 - likelihood ratio, including magnitude and colour terms
- where not possible, use internal LOFAR Galaxy Zoo
 - at least 5 people view each source
 - in progress: more volunteers welcome!
- also identify many potential blended sources that need inspection

Deep multi-wavelength data means that LR techniques identify the host galaxy for over 96% of the sources in Elais-N1

- Compared to 72% in HETDEX, it's clear this enables a vast array of additional science
- *Every* object that doesn't get a LR ID is visually inspected to ensure a robust outcome.

Photometric redshifts

(Courtesy Ken Duncan)

- accurate photo-z's for all sources in the field
 - optimised hybrid of template models & machine learning approach
- reliable to z~1.5 for galaxies and z>3 for AGN

Photometric redshifts

- In Boötes, best-fit photo-z's reach out to z~6 (a known quasar).
- Using the full probability distribution for photo-z's, it's clear that there's a large region of luminosity-redshift space to be probed

Source classification

Source classification (AGN/SF) and extraction of host galaxy properties is in progress

- using well-known diagnostic plots, plus spectral-energy distribution fitting packages MagPHYS, CIGALE, BAGPIPES and AGNfitter
- testing on 1000-source sample in Boötes
- good agreement between SED fits where no strong AGN component

Deep Fields Data Release 1

Focus to date has been on total intensity (Stokes I):

- radio images and catalogues (low and high resolution)
- source associations and host galaxy identifications
- photometric redshifts
- AGN/SF classifications
- host galaxy properties

Also working to produce additional radio data products

- in-band spectral indices
- Stokes V images
- Together with Magnetism KSP, deep Stokes Q & U
- Series of nightly images
- Dedicated re-processing of extended and variable images
- ... let us know if you need something else ...
- (Longer-term: inclusion of international station data)

Deep Fields Data Release 1

Initial data products already released to LOFAR Surveys KSP Intention is to release this publically in late 2019 / early 2020, in conjunction with a series of science papers (as for LoTSS DR1)

- currently have 34 proposed papers for the paper splash
- topics include:
 - Star formation: cosmic star formation history; dusty starbursts; environmental effects on galaxies
 - AGN: radio-loud AGN evolution; radio emission in radio-quiet quasars; AGN morphologies
 - diffuse emission from the cosmic web; halo and relic sources
 - low surface brightness background radiation
 - deep field magnetism
 - nearby stellar systems
 - and more

Conclusions & outlook

- We have shown that LOFAR is capable of imaging to great depths with HBA observations
 - 20µJy/bm rms already, and still going deeper...
- The LOFAR Deep Fields, in the best-studied multi-wavelength regions of the northern sky, will open a vast science potential
- The data will be public soon but if you are interested, get in touch and we can collaborate already
- Longer term, the WEAVE-LOFAR spectroscopic survey will begin next year
 - will take spectra for *all* sources in the LOFAR Deep Fields, adding yet more science.