LOFAR observations of gravitational wave merger events and GRBs

Kelly Gourdji PhD student University of Amsterdam

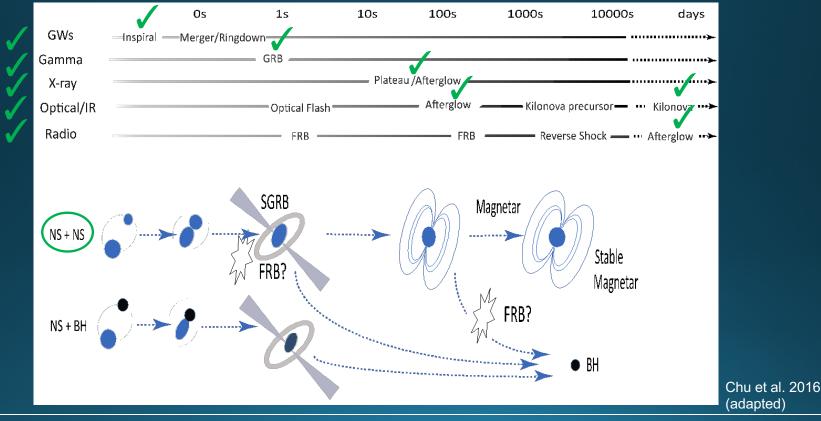
Supervised by Dr. Antonia Rowlinson, Dr. Jess Broderick and Prof. Ralph Wijers

22 May 2019

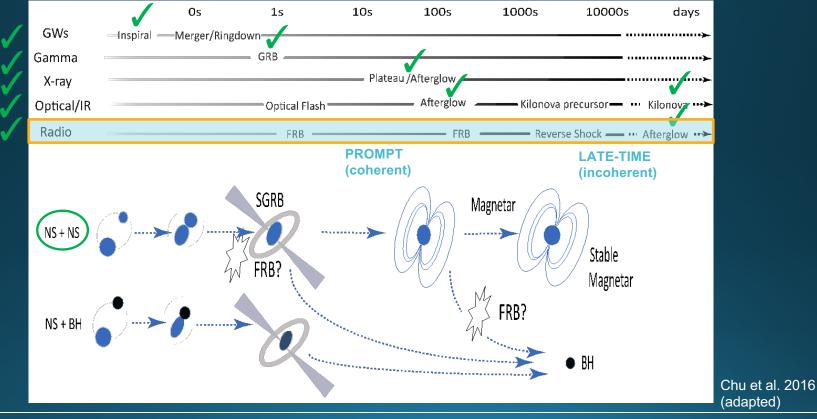
Gravitational waves (GWs) from compact binary mergers

BH + BH

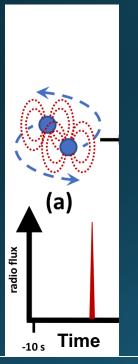
BH + NS


NS + NS

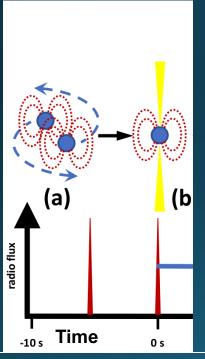
Multimessenger observations of GW170817


GW					
LIGO, Virgo					
<u></u>			_		
γ-ray Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Sw		Viad			
	III, AGILE, CALET, H.E.S.S., HAWC, KONUS-V	Vind			1 I I I I I I I I I I I I I I I I I I I
X-ray					
Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL					
			1 1		
UV					
Swift, HST			••		
				1.1.	
Optical				•	-
Swope, DECam, DLT40, REM-ROS2, HST, Las Cur HCT, TZAC, LSGT, T17, Gemini-South, NTT, GRON	nbres, SkyMapper, VISTA, MASTER, Magella D. SOAR, ESO-VLT, KMTNet, ESO-VST, VIR	n, Subaru, Pan-STARBS1, T. SALT. CHILESCOPE, TOR	os.		
BOOTES-5, Zadko, iTelescope.Net, AAT, Pi of the S	ky, AST3-2, ATLAS, Danish Tel, DFN, T80S, E	ABA			
IR					
REM-ROS2, VISTA, Gemini-South, 2MASS, Spitzer,	NTT, GROND, SOAR, NOT, ESO-VLT, Ranat	a Telescope, HST			
Radio				/	
ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, I	.WA ACMA, OVRO, EVN, e-MERLIN, MeerKA	AT, Parkes, SRT, Effelsberg			
	10-2	10-1			101
-100 -50 0 50	10-2	10 ⁻¹	1)0	101
$t - t_c$ (s)		$t-t_c$ (days)	/	
/			1	/	

Abbott et al. 2017


Possible evolutions and accompanying emission ✓ observed for GW170817

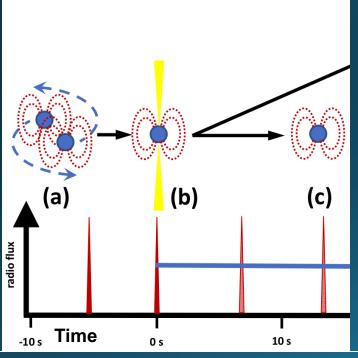
Possible evolutions and accompanying emission ✓ observed for GW170817



Prompt Radio Emission PRE-MERGER

- Interacting NS magnetic fields e.g. Lupunov & Panchenko 1996
- GW + plasma interaction e.g. Moortgat & Kuijpers 2003

Prompt Radio Emission MERGER

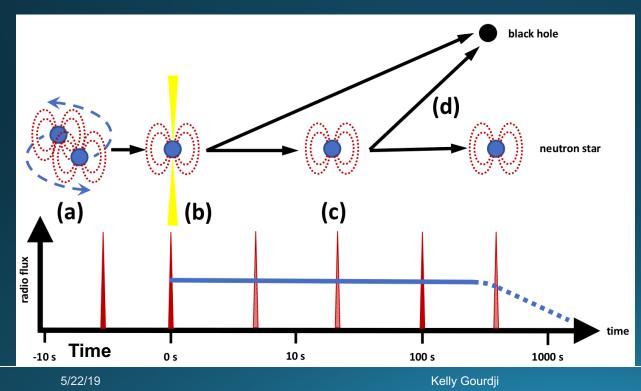


interactions within the relativistic jet

e.g. Usov & Katz 2000

5/22/19

Prompt Radio Emission POST-MERGER


What is the merger remnant?

Key discovery space:

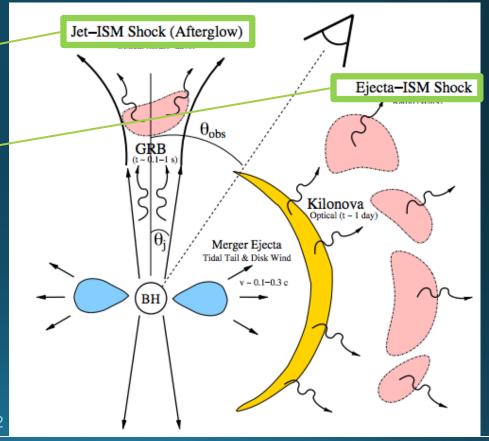
- jet launching mechanism
- NS equation of state (EOS)

Prompt Radio Emission POST-MERGER

Hypermassive NS collapse to BH → FRB? e.g. Falcke & Rezzolla 2014

Magnetar

- FRB-like emission
- Pulsar-like emission

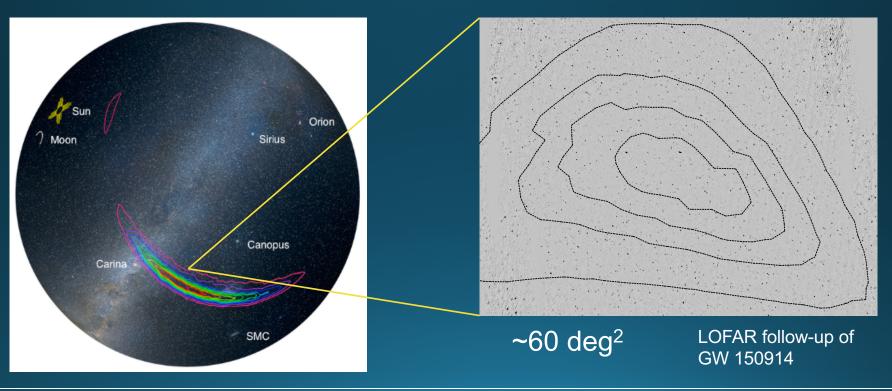

LOW-LATENCY REQUIRED!

Late-time radio emission ✓ observed for GW 170817

Jet afterglow: jet structure-

Dynamical ejecta afterglow: EOS

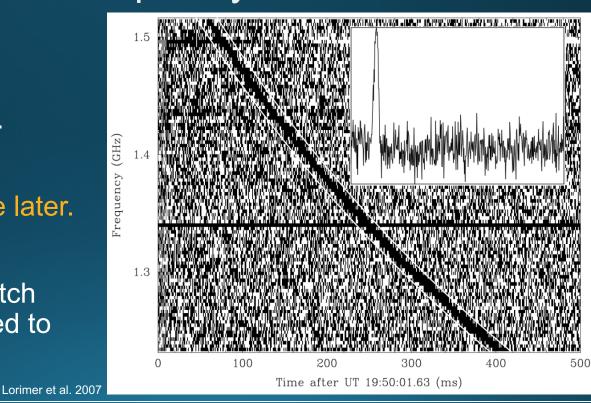
Afterglow brightness depends on ISM density.


Adapted from Metzger & Berger 2012

LOFAR HBA observations

5/22/19

Why LOFAR? Large instantaneous field of view



Why LOFAR? Low frequency

Dispersion delay scales inversely with frequency.

Lower frequencies arrive later.

Gives us a chance to catch coherent emission related to mergers!

Kelly Gourdji

LOFAR rapid response

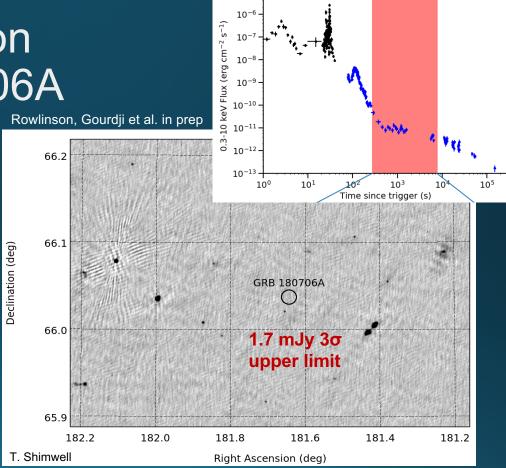
On source within <5 mins of trigger

Simultaneous beamformed + interferometric observations

Iofartest.control.lofar:8080/mom3/user/project/setUpMom2ObjectDetails.do?view=statushistorv ABP \sim Details 🕅 Close Window test-lofar > TARGET A > AARTFAAC-TRIGGERED > Target/1/TO 🥐 <u>Help</u> General Info Dataproducts **Reports and Remarks** Status History Parset Status Date Changed by finished 2017/04/10 09:13 UTC System, Qpid running 2017/04/10 09:10 UTC System, Opid scheduled 2017/04/10 09:07 UTC System, Qpid approved 2017/04/10 09:07 UTC System, Qpid opened 2017/04/10 09:07 UTC System, Qpid

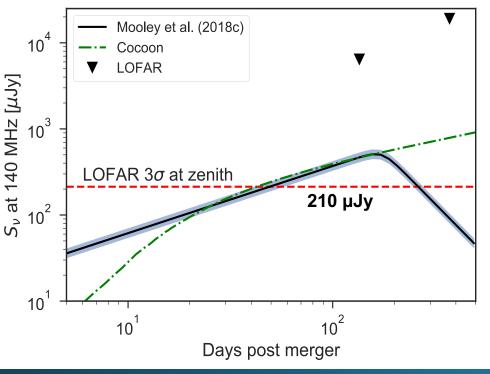
See https://asterics2020.eu for more info.

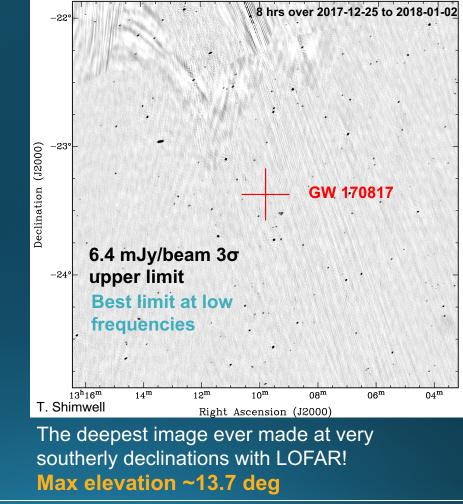
LOFAR GRB triggers


- GW detectors sensitive out to only z~0.04
- SGRBs typically $0.1 \le z \le 1$
 - higher dispersion delays
- Swift alerts issued in seconds

LOFAR Observation of long GRB 180706A

On source 4.5 minutes post-trigger!


2-hr integration targeting pulsar-like emission

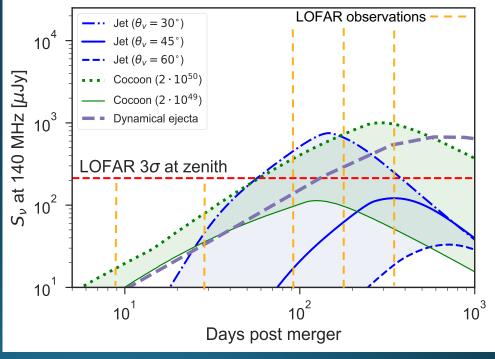

Three orders of magnitude deeper than the best previous study (Kaplan, Rowlinson et al. 2015).

Late-time observations of GW 170817

Broderick, Shimwell, Gourdji + in prep

5/22/19

Kelly Gourdji


Late time follow-up

Searching for incoherent emission from afterglow.

- Our 225 minute images are reaching 0.5 mJy/beam noise before DDC
- Calibrated images created within 3 days

GW170817-like jet, 100 Mpc, 0.01 cm⁻³

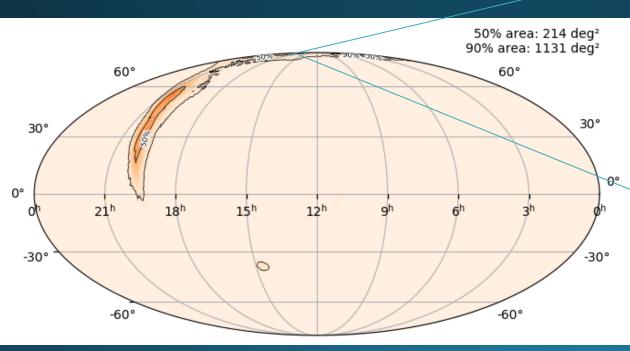
Broderick, Shimwell, Gourdji et al. in prep

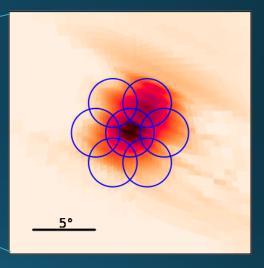
5/22/19

Summary

Radio observations of BNS mergers can

- constrain the remnant
- tell us about the jet and neutron star(s) via the afterglow

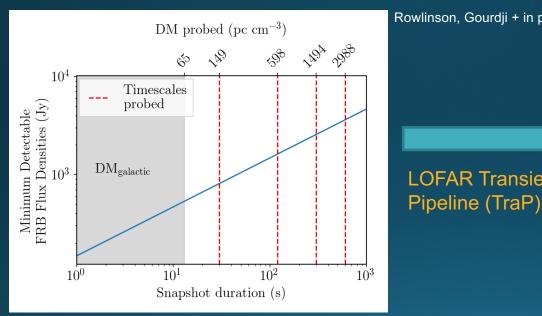

LOFAR telescope triggers (within minutes)


- on GW merger events
 - constrains existence of a magnetar
- on Swift GRBs

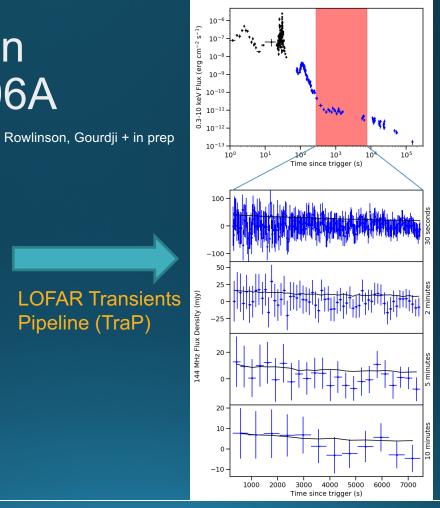
- Allows us to probe earlier timescales of compact mergers (sGRBs) and core-collapse supernovae (IGRBs)

ADDITIONAL SLIDES

S190426c – BH/NS candidate

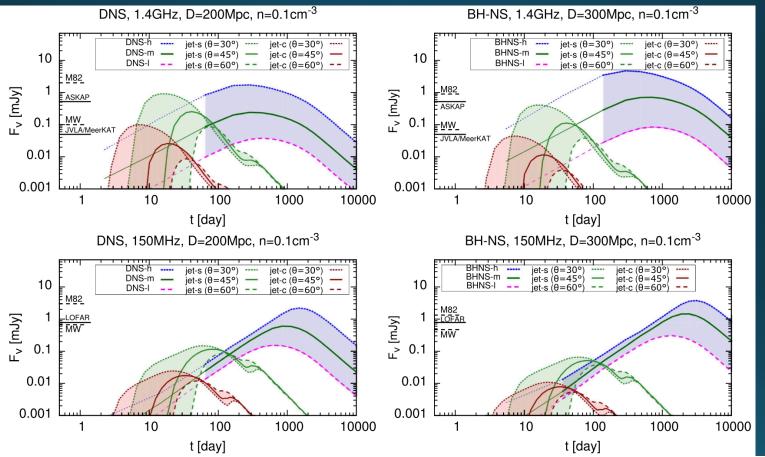

LOFAR covers ~22% of GW probability map

8 hour LOFAR observation


Looking ahead

- 6 triggers for O3 aLIGO/aVirgo + follow-up time
- Larger GW detector network
 - Smaller localization thus deeper images
- Lower latencies for GW alerts and LOFAR triggering
- triggers for GRB follow-up

LOFAR Observation of long GRB 180706A

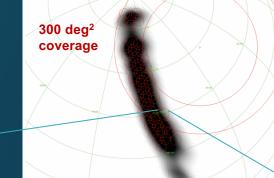


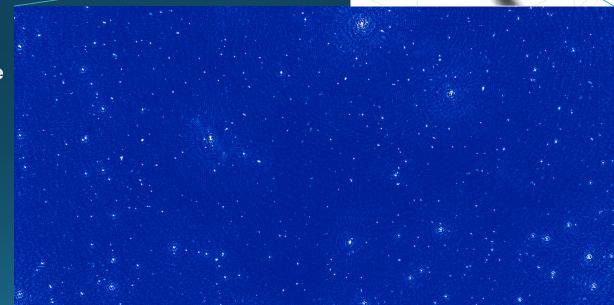
5/22/19

Kelly Gourdji

Hotokezaka et al. 2019

22/5/19


Kelly Gourdji


Late time follow-up

1 week, 1 month, 3 months, 6 months, 1 year timescales

Our 225 minute images are reaching 0.5 mJy/beam noise

We will go much deeper for well localized GW sources!

Thank you

s.

S.

3

1

Low-frequency radio follow-up with the LOw Frequency ARray (LOFAR)

We collect data from 110-190 MHz