The LOFAR radio continuum view on galactic winds

Volker Heesen Hamburger Sternwarte

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

and the LOFAR Magnetism KSP

KEYSCHENCE PRO

Mulcahy et al. (2018)

Motivation: cosmic-ray transport

- Stellar feedback plays vital role for galaxy evolution
- Cosmic ray-driven winds are:
 - cooler: 10⁴ K rather than 10⁶ K
 - denser: resulting in higher mass loading
- With radio continuum observations
 - we trace cosmic-ray electrons (CRe)
 - isotropic/ansiotropic diffusion in the disc
 - advection in the halo (galactic wind)

Flattening of the low-frequency radio spectrum

Inclination angle

Chyzy et al. (2018)

ID CR-transport models

Advection:

- Exponential intensity and linear spectral index profiles
- Diffusion:
 - 'Gaussian' intensity and parabolic spectral index profiles

Galactic Disc

Spectral Index Numerical Analysis of K(c)osmic-ray Electron Radio-emission

<u>www.github.com/</u> <u>vheesen/Spinnaker</u>

Heesen et al. 2016

SPINTERACTIVE

Developed by Arpad Miskolczi

SPINNAKER & SPINTERACTIVE:

https://github.com/vheesen/Spinnaker

The radio halo in NGC 3556 (MI08) Miskolczi et al. (2019)

Detection of the radio halo

Overlay on X-ray

Intensity I 40 MHz

I.6 GHz

Accelerated wind

Constant wind

Diffusion

Accelerating advection speed

Recchia et al. (2016)

IC 10

D = 0.7 Mpc SFR = 0.05 M yr⁻¹ SFRD = 0.1 M yr⁻¹ kpc⁻² Wolf–Rayet stars Star burst Few Myr star clusters

HI velocity field

D = 0.7 Mpc SFR = 0.05 M yr⁻¹ SFRD = 0.1 M yr⁻¹ kpc⁻² Wolf–Rayet stars Star burst Few Myr star clusters

HI velocity field

Cosmic-ray transport models

(Heesen et al. 2018a)

Distance from maj. axis

- Accelerating wind:
- Reaches V_{esc}
- Solution with equipartition:
 - Magnetic fields
 - -Warm neutral medium
 - –Warm ionized medium
 - Cosmic rays

NGC 4013 – hybrid diffusion-advection halo LOFAR 150 MHz (contours) Stein et al. (2019, in prep.)

Gaussian intensity profile

6-GHz B-field vectors

Slow wind (20–50 km s⁻¹); diffusion important

NGC 4565 – diffusion-dominated halo

Gaussian intensity profiles cannot be described by advection

Low SFR and suface
density
High mass
surface
density
No
outflow?

Diffusion coefficients: $D = (0.7-3.1) \times 10^{28} \text{ cm}^2 \text{ s}^{-1}$ at 1 GeV (mostly not energy dependent)

(Heesen et al. in prep.)

Parameter studies

Intensity scale height

Magnetic field scale height

Advection speed

Star formationStar formationRotationraterate surface densityspeedVolker Heesen, Galactic winds in the radio continuum with LOFARSpeed

Parameter studies

Intensity scale height

Magnetic field scale height

Advection speed

Star formationStar formationRotationraterate surface densityspeedVolker Heesen, Galactic winds in the radio continuum with LOFARSpeed

Dark matter in Canes Venatici I

Vollmann et al. (2019, in prep.)

27m308

0.010

0.008

0.006

0.004

0.002

0.000

y//beam

Radial intensity profile

Upper limits comparable to Fermi–LAT in y-rays!

LOFAR 150-MHz

Conclusions

- Radio haloes indicate presence of CRe
- Exponential intensity profile: advection
- Gaussian intensity profile: diffusion
- More important even: spectral index profile
- Accelerated outflow in MI08 (NGC 3556)
- NGC 4565: diffusion-dominated
- ICI0: possibly accelerated wind
- NGC 4013: hybrid diffusion-advection halo

ID modelling of cosmic-ray transport

N(E, z): Cosmic Ray electron number (column) density

CRe losses:
$$-\left(\frac{dE}{dt}\right) = b(E) = \frac{4}{3}\sigma_{T}c\left(\frac{E}{m_{e}c^{2}}\right)^{2}\left(U_{rad} + U_{B}\right)$$

inverse-Compton losses
Volker Heesen, Galactic winds in the radio continuum with LOFAR

Scale heights in CHANG-ES galaxies

Krause et al. (2018)

14

16

Yellow: advection (escape) Green: diffusion Blue: advection (no escape)

Trend with mass surface density

Trend with diameter

NGC 4631: Advection model

B-field model profile

B(z) =

2

8.6µGxexp(-|z|/0.6kpc)

+5.0µGxexp(-|z|/5.0kpc)

Δ

6

Radio spectral index profile

Exponential intensity profiles + linear spectral index profiles

Advection dominated halo

NGC 7462: Diffusion mode!

Magnetic field model profile

Radio spectral index profile

IC 10: a starburst dwarf galaxy

Heesen et al. (2018c)

IC 10: a starburst dwarf galaxy

Heesen et al. (2018c)

Radio halo

LOFAR 140 MHz

GMRT 325 MHz VLA 1580 MHz

- Structure is consistent with higher frequencies
- Flat non-thermal spectral index ($\alpha_{nt} = -0.5$)
- Halo is not spherical, but boxy
- Similar to NGC 1569 (Sridhar et al. 2018, in prep.)

- Magnetic fields
- –Warm neutral medium (HI)
- –Warm ionized medium (H α)
- Cosmic rays

 $X_{\rm CR}$

dominated

by CR

pressure

SN positions

type II
type Ia

column density

upper

halo

2.0