Overview of Space Weather activities with LOFAR

Absolute TEC Measurements using calibration solutions

M.Mevius S.vd Tol F. de Gasperin

Method

$$\left(\begin{array}{cc}G_{xx} & G_{xy}\\G_{yx} & G_{yy}\end{array}\right) = \left(\begin{array}{cc}\cos(\alpha) & \sin(\alpha)\\-\sin(\alpha) & \cos(\alpha)\end{array}\right) \cdot \left(\begin{array}{cc}G_{xx} & 0\\0 & G_{yy}\end{array}\right)$$

LOFAR calibration:

High accuracy phase solutions \rightarrow c/t separation \rightarrow Very accurate differential TEC solutions (~1mTECU)

$$\Delta\phi(\mathbf{v}) = A \cdot 2\pi\mathbf{v} + B \cdot 8.4479745 \cdot 10^9 / \mathbf{v}$$

Differential Faraday Rotation: Artificial Polarization due to different Faraday Rotation Angle along two LOS \rightarrow Δ RM from rotation matrix

Differential only: NO information about absolute ionospheric electron density

Exception \rightarrow Measure ionospheric Faraday rotation of polarized emission

Different method: Measure absolute TEC using correlation between ΔRM and ΔTEC from calibration

Sotomayor-Beltran et al (2013)

Faraday rotation:

$$\mathrm{RM} = C \int_{LOS} n_e \cdot B_{||}$$

Differential Faraday rotation:

$$C^{-1}\Delta \mathbf{R}\mathbf{M}_{ij} = \int_{LOSi} n_e \cdot B_{||} dh - \int_{LOSj} n_e \cdot B_{||} dh$$

Thinscreen approach at altitude h

$$C^{-1}\Delta RM_{ij} = STEC_i \cdot B_{||hi} - STEC_j \cdot B_{||hj}$$

$$C^{-1}\Delta RM_{ij} = \Delta STEC_{ij} \cdot B_{||i} - STEC_i \cdot \Delta B_{||ij}$$

Faraday rotation:

$$\mathrm{RM} = C \int_{LOS} n_e \cdot B_{||}$$

Differential Faraday rotation:

$$C^{-1}\Delta RM_{ij} = \int_{C_{i} \subset G_{i}} n_{e} \cdot B_{||} dh - \int_{OSj} n_{e} \cdot B_{||} dh$$
Calibration solutions
$$C_{j} \cdot B_{||hj}$$

$$C^{-1}\Delta RM_{ij} = \Delta STEC_{ij} \cdot B_{||i} - STEC_{i} \cdot \Delta B_{||ij}$$

Faraday rotation:

Method RMextract [ascl:1806.024]

$$\text{STEC}_i = (C^{-1} \Delta \text{RM}_{ij} - \Delta \text{STEC}_{ij} \cdot B_{||i}) / \Delta B_{||ij}$$

Bfield models reasonably well know (~5%) Large uncertainty from $\Delta B||$ Longer baselines \rightarrow lower uncertainty Select data where $\Delta B|| > 100 \text{ nT}$

Thinscreen approach:

Altitude dependence of $B||, \Delta B||$

h=300km

Use airmass correction to convert sTEC → vTEC Comparison with IONEX

0.4 0.3 0.2 0.1 0.1 0.0 <u>v</u> 0.0 0.1 0.1 0.2

	Target Name	3C196	3C295	3C380
	RA (J2000)	08:13:36.1	14:11:20.3	18:29:31.8
	Dec (J2000)	+48:13:02	+52:12:10	+48:44:46
	Date	03 May 2013	17 Nov 2017	17 Nov 2017
			18 Nov 2017	18 Nov 2017
			19 Nov 2017	19 Nov 2017
			20 Nov 2017	20 Nov 2017
			21 Nov 2017	21 Nov 2017
			25 Nov 2017	24 Nov 2017
			26 Nov 2017	25 Nov 2017
			28 Nov 2017	26 Nov 2017
				28 Nov 2017
-	Time range (UTC)	$18:00 \rightarrow 23:30 \ (5.5 \ hr)$	$07:00 \rightarrow 12:04 \ (5 \ hr)$	$12:05 \rightarrow 15:07 \ (3 \text{ hr})$
			$07:00 \rightarrow 12:04 \ (5 \ hr)$	$12:05 \rightarrow 15:07 \ (3 \text{ hr})$
			$07:00 \rightarrow 12:04 \ (5 \text{ hr})$	$12:05 \rightarrow 15:07 \ (3 \text{ hr})$
			$07:00 \rightarrow 12:04 \ (5 \ hr)$	$12:05 \rightarrow 15:07 \ (3 \text{ hr})$
			$07:00 \rightarrow 12:04 \ (5 \ hr)$	$12:05 \rightarrow 14:06 \ (2 \text{ hr})$
Ant			$07:00 \rightarrow 12:04 \ (5 \ hr)$	$14:00 \rightarrow 15:00 \ (1 \ hr)$
rh JWh			$07:00 \rightarrow 12:04 \ (5 \ hr)$	$12:05 \rightarrow 15:07 \ (3 \text{ hr})$
AVANN			$06:00 \rightarrow 11:04 \ (5 \text{ hr})$	$12:05 \rightarrow 15:07 \ (3 \text{ hr})$
ALL Same				$11:05 \rightarrow 14:07 \ (3 \text{ hr})$
A A A A A A A A A A A A A A A A A A A	Time resolution (s)	5	4	4
VI NA	Frequency range (MHz)	22 - 70	42 - 66	42 - 66
VI LIMA	Frequency resolution (kHz)	195.3 (244 channels)	48.8 (122 channels)	48.8 (122 channels)
	Recorded polarisations	XX XY YX YY	XX XY YX YY	XX XY YX YY
		Table 2: O	bservation details	

de Gasperin et al. A&A2018

VTEC (TECU)

1

VTEC (TECU)

۱r)

TEC variation different baselines

dTEC systematic uncertainty phase offset

 $\Delta \phi(v) = A \cdot 2\pi v + B \cdot 8.4479745 \cdot 10^9 / v$

A constant (t,v) phase offset will result in a constant dTEC offset if not taken into account Fit using spatial constraint on average dTEC Works reasonable for CS, not for RS

dTEC systematic uncertainty phase offset

 $\Delta \phi(v) = A \cdot 2\pi v + B \cdot 8.4479745 \cdot 10^9 / v$

A constant (t,v) phase offset will result in a constant dTEC offset if not taken into account Fit using spatial constraint on average dTEC Works reasonable for CS, not for RS

Ford et al 2006

Waves

Method tends to overestimate sTEC variations in turbulent conditions (waves):

WMM model does not include local variations

Waves could locally change the nominal bulk altitude (~10-100km)

Thinscreen model not sufficient

Vertical shifts

Reversing the argument: B-field estimation from linear dependence

Sliding window

 $\Delta RM vs \Delta STEC$

Conclusion

- In principle measurements with similar accuracy as IONEX data possible
- Systematic uncertainties not fully understood yet:
 - Altitude/Profile dependence
 - dTEC offsets
 - Magnetic Field Model
- Too large amplitudes especially in the case of waves -> related to altitude shifts?
- absolute sTEC measurements in LOS: useful for polarization RM corrections OUTLOOK:
- HBA data
- International Baselines
- Paper (Mevius, vdTol, de Gasperin et al) in preparation

Overview of Space Weather activities with LOFAR

