Detecting Cosmic Rays with LOFAR

LOFAR Community Science Workshop 2019

Katie Mulrey for the CR KSP

A. Bonardi, S. Buitink, A. Corstanje, H. Falcke, B. M. Hare, J. R. Hörandel, T. Huege, G. Krampah, P. Mitra, K. Mulrey*, A. Nelles, H. Pandya, J. P. Rachen, L. Rossetto, P. Schellart, O. Scholten, S. ter Veen S. Thoudam, T. N. G. Trinh, T. Winchen

*kmulrey@vub.be

Cosmic Rays and Multi-Messenger Astronomy

Gamma rays: point to sources, can be absorbed, multiple emission mechanisms

Neutrinos: point to sources, not absorbed, weak interaction Cosmic rays: charged and deflected, info in composition, easy to detect

Cosmic ray all-particle spectrum

Cosmic ray energy & composition

Hillas criterion: $E_{max} \propto Z e B r$

Max Energy E_{Fe, max}= 26 x E_{p,max}

- Below 10¹⁹ eV, can't point directly to sources
- Use composition to understand origin
- Transition to heavier composition indicates the maximum source energy is reached

Composition: Measuring Xmax

radio detection

nearly 100% duty cycle LOFAR, AERA, Tunka

fluorescence light

dark nights (<15% duty cycle) Pierre Auger Observatory

Cosmic ray radio emission

T. Huege. Physics Reports, 620:1-52, 2016

Radiation Pattern:

- Direction
- Magnetic Field
- Energy
- X_{max}
- Atmosphere

T. Huege. Physics Reports, 620:1-52, 2016

Radio Detection Experiments

6

Cosmic Ray Detection at LOFAR

6 LBA stations (6 x 48 antennas) + stations outside Superterp

Stokes Parameters

O. Scholten et al., PRD 94 1030101 (2016)

Stokes Parameters

Event Analysis

-60<u>-</u>

0.5

1.0 Time (us) 1.5

2.0

55ns of peak emission

antenna

Radiation from

track endpoints

CoREAS simulation

no assumptions

about emission

hadronic models

T. Huege et al. AIP Conf.Proc. 1535 (2013) no.1, 128

independent of

Event Analysis

A. Corstanje Astropart. Phys. 89 (2017)

GDAS Atmospheric Corrections

- GDAS provides atmosphere measurements (temp, humidity, pressure)
- Any location (1°x1°), time (3-hourly)
- Integrated into simulations
- For extreme conditions, can shift X_{max} up to 15 g/cm²

2 independent methods Nelles, A. et al. 2015, Journal of Instrumentation, 10, P11005

1. Reference Source

- + Angular response
- Relies on conflicting manufacturer data sheets
- Not easily repeatable

2. Galactic Emission

- Average over whole sky
- + Can be done anytime
- Large error bars due to electronic noise

LORA expansion

- Current cosmic-ray trigger is based on 20 scintillators on the superterp
- Expand by adding 20 scintillators at neighboring
- Expected 45% increase in events

Installation began spring 2018

Low Energy Extension: Hybrid Trigger

Hybrid Trigger

Hybrid Trigger

Need access to existing radio trigger info in real time to form trigger

Can we access the highest energy particles?

Lunar Detection Mode: ZeV Particles with LOFAR

Goldstone VLA Westerbork Lovell ATCA Kalyazin LOFAR Parkes

moon ~ 10⁷ km² detector area

Lunar Detection Mode: NuMoon

0.1

0.2

- The moon provides large target to detect rare, highest energy particles
- Use high band (110-240 MHz) antennas to form multiple beams on the moon
- Search for nanosecond pulses while suppressing RFI

Challenges:

- Must trigger in real-time (5 s buffer)
- Signal is dispersed in ionosphere
- Only have access to processed signal

Lunar Detection Mode: NuMoon

Real time RFI rejection is possible!

Expected Sensitivity (200h)

- New sensitivity values:
- 5 stations instead of 24
- Increased bandwidth
- Reduced trigger threshold
- Full detection simulation (still relies on semi-analytical model for pulse escape from moon)

T. Winchen

Summary

- LOFAR measures air showers
 with highest precision in radio
- X_{max} reconstruction resolution competitive with fluorescence
- New atmospheric modelling & calibration
- Multiple Extensions (hybrid trigger + LORA)
- Lunar detection very promising (overlap with ground experiments!)

Backup

Calorimetric Energy Estimate

 $S_{\rm RD} = A \times 10^7 \, {\rm eV} \, (E_{\rm em} / 10^{18} \, {\rm eV})^B$

11

T. Winchen

Full Stokes polarisation & thunderstorms

- Fair weather: small amount of circular polarisation confirmed by data O. Scholten et al., PRD 94 1030101 (2016)
- Thunderstorms: strong signal in all Stokes parameters used to reconstruct atmospheric electric fields
 G. Trinh et al., PRD 95 083004 (2017)

Wavefront Shape

Corstanje, A. et al. Astropart. Phys. 61 (2015) 22-31

Thunderstorm events

LOPES: Amplification in thunderstorms S.B. et al. A&A 467, 385 (2007)

LOFAR: measure atmospheric E-field

Schellart et al. PRL **114**, 165001 (2015) Trinh et al. PRD **93**, 023003 (2016)

Hillas Plot

$$E_{max} \simeq 10^{18} \text{eV} \ Z \ \beta \left(\frac{R}{\text{kpc}}\right) \left(\frac{B}{\mu \text{G}}\right)$$