Magnetising the universe with dwarf galaxies A new low-frequency radio continuum perspective

Sarrvesh S. Sridhar With LOFAR Magnetism KSP

ASTRON, the Netherlands

May 22, 2019

Magnetising the universe with dwarf galaxies

- Astrophysical magnetic fields have been observed on a wide variety of scales.
- From pulsars to galaxy clusters.
- $m \circ \sim nG$ field lines are expected to pervade cosmic filaments.
- Where did they come from?
 - ► Top-down:
 - ★ Entire universe was magnetized by a global process.
 - * Usually requires physics beyond the Standard Model.
 - Bottom-up:
 - ★ Magnetization happens first on the small scales
 - ★ Propagates to large scales through outflows, diffusion ...
 - * Kronberg et al (1999): magnetized outflows from galaxies in the early universe.

Magnetising the universe with dwarf galaxies

- Magnetised outflows from dwarf galaxies can permeate IGM with seed fields.
 - Kronberg et al (1999); Bertone et al (2006)
- We cannot observe dwarf galaxies at high-z
- ... but we can study their local universe counterparts.

Image: Bertone et al (2006) for two different magnetic energy density (z=3, 1, 0.5, 0).

Dwarf galaxies sample

- Pilot study to observe 4 dwarf galaxies with LOFAR HBA (Observed in cycles 6/7).
- Same observational setup as the LOFAR Tier-1 Survey (LoTSS)
- Model cosmic ray transport in the radio halos.
- Four of the brightest galaxies from LITTLE-THINGS (Hunter et al. 2012)

Galaxies	Distance (D)	$\log_{10} \Sigma_{\rm SFR}$	M_{HI}
	[Mpc]	$[{ m M}_{\odot}~{ m yr}^{-1}~{ m kpc}^{-2}]$	$[10^8 { m M}_\odot]$
NGC 1569	3.36	-0.01 ± 0.01	0.78
DDO 50	3.40	-1.55 ± 0.01	5.95
NGC 2366	3.44	-1.66 ± 0.01	6.49
NGC 4214	2.90	-1.08 ± 0.01	4.08

Distances: Grocholski et al. (2008), Dalcanton et al. (2009), and Tolstoy et al. (1995). SFR – Hunter et al. (2010); H I mass – Walter et al. (2008);

AST

Dwarf galaxies: total intensity maps

- Diffuse emission seen around two of four dwarf galaxies.
- NGC 1569 is more extended (by a kpc) than at high frequencies (Kepley et al. 2010).
- NGC 1569 has a boxy morphology.
- Boxy morphology is seen in other spirals like NGC 5775.
- Unclear why some galaxies are boxy while most others are not.

AST(RON

20

NGC 1569

- A number of supershells are seen in NGC 1569
- Outflows larger than escape velocity detected in NGC 1569 (Martin et al 1995)

NGC 1569

- A number of supershells are seen in NGC 1569
- Outflows larger than escape velocity detected in NGC 1569 (Martin et al 1995)

6 cm and 3 cm images: Kepley et al (2010)

AST(RON

LOFAR Science Workshop, Leiden (2019)

Dwarf galaxies: thermal fraction

- Thermal subtraction using H α and Spitzer 24 μm
 - See Kennicutt et al (2009) and Hunt et al (2004)
- $\bullet~>30\%$ thermal fraction in several $\rm H\,{\scriptscriptstyle II}$ regions

AST(RON

Dwarf galaxies: Non-thermal spectral index

- Spectral index between 150 MHz and 1.4 GHz
- $\bullet~\rm H\,{\scriptscriptstyle II}$ regions show flat spectral index.
- Radial increase in non-thermal spectral index.

9 / 20

Dwarf galaxies: Magnetic field strengths

- $\bullet\,$ Mean field strength in NGC 4214: 11.5 μ G.
- $\bullet\,$ In NGC 1569, B $_{\rm eq}\,\,\sim\,\,$ 32 μ G in the optical disk and drops to $\sim\,\,$ 5 μ G in the halo.
- Estimate field strengths are higher than what is seen in normal spiral galaxies.

Radio halo around other galaxies

- Radio halos have been detected around other nearby dwarf and spiral galaxies.
- For example: NGC 4449 and NGC 5775

Images: Chyzy, Sridhar et al (in prep); Heald et al (in prep)

LOFAR Science Workshop, Leiden (2019)

11 / 20

Modelling CR transport with pure advection/diffusion - Preliminary

- \bullet Heesen et al (2016) \rightarrow 1D cosmic ray propagation model with advection/diffusion
- CR electrons are injected close to the mid-plane.
 - See next talk by Volker Heesen for details.
 - Synchrotron and inverse Compton losses.
 - Predicts a synchrotron emission spectra for
 - \star a given magnetic field distribution, and
 - ★ a wind model.

Modelling CR transport with pure advection/diffusion - Preliminary

- \bullet Heesen et al (2016) \rightarrow 1D cosmic ray propagation model with advection/diffusion
- CR electrons are injected close to the mid-plane.
 - See next talk by Volker Heesen for details.
 - Synchrotron and inverse Compton losses.
 - Predicts a synchrotron emission spectra for
 - \star a given magnetic field distribution, and
 - ★ a wind model.
 - Close to 20 galaxies have been modelled this way
 - * Mostly dominated by advection with few exceptions.
 - \star Advection speed ranges from 100 to 700 km s⁻¹
 - * Advection speed appears to be correlate with SFR.

Modelling CR transport with pure advection/diffusion - Preliminary

- \bullet Heesen et al (2016) \rightarrow 1D cosmic ray propagation model with advection/diffusion
- CR electrons are injected close to the mid-plane.
 - See next talk by Volker Heesen for details.
 - Synchrotron and inverse Compton losses.
 - Predicts a synchrotron emission spectra for
 - \star a given magnetic field distribution, and
 - ★ a wind model.
 - Close to 20 galaxies have been modelled this way
 - * Mostly dominated by advection with few exceptions.
 - \star Advection speed ranges from 100 to 700 km s⁻¹
 - * Advection speed appears to be correlate with SFR.
- \bullet In NGC 1569, advection dominated model fits well with speed ~ 200 km/s.
 - Escape velocity at 2.2 kpc is \sim 70 km/s. Johnson et al (2012)

Dwarf galaxies sample

- Pilot study to observe 4 dwarf galaxies with LOFAR HBA.
- Same observational setup as the LOFAR Tier-1 Survey (LoTSS)
- Targetted observations deeper than LoTSS needed to build a larger sample.
- Four of the brightest galaxies from LITTLE-THINGS (Hunter et al. 2012)

Galaxies	Distance (D)	$\log_{10} \Sigma_{\rm SFR}$	M _{HI}
	[Mpc]	$[M_{\odot}^{-1}~kpc^{-2}]$	$[10^8 \ { m M}_\odot]$
NGC 1569	3.36	-0.01 ± 0.01	0.78
DDO 50	3.40	-1.55 ± 0.01	5.95
NGC 2366	3.44	-1.66 ± 0.01	6.49
NGC 4214	2.90	-1.08 ± 0.01	4.08

Distances: Grocholski et al. (2008), Dalcanton et al. (2009), and Tolstoy et al. (1995). SFR – Hunter et al. (2010); H I mass – Walter et al. (2008);

Rotation Measure synthesis

- Integrated part of wideband radio polarimetry pipelines.
- \bullet Wide bandwidth \rightarrow large $\mathsf{N}_{\mathrm{chan}}$ and N_{ϕ}
- $\bullet~$ Large field of view \rightarrow large $N_{\rm pix}$

RM synthesis – Computation cost

$$\widetilde{Q}(\phi_j) = K \sum_{i=1}^{N} Q_{\lambda i} \cos 2\phi_j (\lambda_i^2 - \lambda_0^2) + U_{\lambda i} \sin 2\phi_j (\lambda_i^2 - \lambda_0^2); \ \forall \phi_j \in [\phi_{\min}, \phi_{\max}]$$
(1)
$$\widetilde{U}(\phi_j) = K \sum_{i=1}^{N} U_{\lambda i} \cos 2\phi_j (\lambda_i^2 - \lambda_0^2) - Q_{\lambda i} \sin 2\phi_j (\lambda_i^2 - \lambda_0^2); \ \forall \phi_j \in [\phi_{\min}, \phi_{\max}].$$
(2)

RM synthesis – Computation cost

$$\widetilde{Q}(\phi_j) = K \sum_{i=1}^{N} Q_{\lambda i} \cos 2\phi_j (\lambda_i^2 - \lambda_0^2) + U_{\lambda i} \sin 2\phi_j (\lambda_i^2 - \lambda_0^2); \ \forall \phi_j \in [\phi_{\min}, \phi_{\max}]$$
(1)
$$\widetilde{U}(\phi_j) = K \sum_{i=1}^{N} U_{\lambda i} \cos 2\phi_j (\lambda_i^2 - \lambda_0^2) - Q_{\lambda i} \sin 2\phi_j (\lambda_i^2 - \lambda_0^2); \ \forall \phi_j \in [\phi_{\min}, \phi_{\max}].$$
(2)

- Compute cost $\sim 15 \cdot N_{\phi} \cdot N_{\rm chan} \cdot N_{\rm los}$
- ullet For a typical 1.4 GHz Westerbork experiment, compute cost \sim 1.3 TFLOPs
- \bullet For a typical LOFAR pointing, it is ~ 1.5 PFLOPs!
- Easy to implement on Single Instruction/Multiple Data (SIMD) architecture

AST

cuFFS: A GPU-accelerated RM synthesis package

- Written in CUDA C. Supports both FITS and HDF5 file formats.
- Upto 2 orders of magnitude faster than other public codes.
- See https://github.com/sarrvesh/cuFFS or ascl:1810:015
- Used to process the MWA polarization survey
 - ▶ POlarization from the GLEAM Survey (POGS). See Riseley et al (2018).
 - ▶ Cube size: 13000 × 5000 × 4000
- Actively being developed:
 - Implement RM Clean
 - Faraday synthesis
 - Comments/feature requests welcome

Polarized emission - Background radio sources

- 8C 0821+695 Giant Radio Galaxy at z = 0.53
- Linear size: 7'.7 = 2.65 Mpc
- '+' sign indicates the location of polarized emission

AST

Polarized emission - Target galaxies

- None of the nearby galaxies studied so far have polarized emission at 150 MHz.
- Polarized emission at 150 MHz arises at large z
 - Ordered **B** is small at large z
 - Number density of relativistic electrons is small

AST(RON

18 / 20

Images: George Heald; Maja Kierdorf.

LOFAR Science Workshop, Leiden (2019)

Magnetising the universe with dwarf galaxies

Summary

- We have detected radio halo around the nearby dwarf galaxy NGC 1569
- Cosmic ray transport model reveals magnetized outflows
 - \blacktriangleright advection velocity, $v_{\rm adv}\sim 200$ km/s
 - \blacktriangleright advection velocity larger than escape vlocity $v_{\rm esc} \sim 70$ km/s
- Observations deeper than LoTSS needed to build a larger sample.
- Detecting polarized emission from nearby galaxies is still challenging.