STRONG GRAVITATIONAL LENSES AT LOW RADIO FREQUENCIES

HANNAH STACEY, JOHN MCKEAN, NEAL JACKSON ET AL.

THE DIFFERENT MODES OF FEEDBACK

- Feedback from AGN and star formation
- To what extent do these affect their host galaxies?
- What feedback modes are at work in radio-quiet quasars?

Radiative feedback

Mechanical feedback

Stellar feedback

WHAT POWERS THE RADIO EMISSION IN RADIO-QUIET AGN?

- Radio-infrared correlation to determine whether there is excess due to radio emission associated with BH accretion
- Excess could hint at radiomode feedback
- Differing results could depend on how study is designed?

STAR FORMATION IN GRAVITATIONALLY LENSED QUASAR HOSTS

- Probing intrinsically fainter luminosities
- At least 66% quasar hosts have high levels of dust emission seen with Herschel
- Extreme SFR >1000 M_☉ yr⁻¹ observed in some cases – in tension with models of galaxy evolution?

Targets for detailed follow-up

RADIO PROPERTIES OF GRAVITATIONALLY LENSED QUASARS

Understanding radio properties currently limited by lack of radio detections (mostly limits from FIRST or NVSS)

RADIO-INFRARED CORRELATION FOR LENSED QUASARS

Radio-quiet quasars scattered close to correlation but still dominated by upper-limits

LENSED QUASARS IN LOTSS DR1

Three lensed quasars in the parent sample happen to be in HETDEX field covered by LoTSS DR1 and all are detected

Stacey et al. 2019

LENSED QUASARS IN LOTSS DR1

Three LoTSS detected sources are on the radio-infrared correlation, i.e. consistent with being SF-dominated

LENSED QUASARS IN LOTSS: FUTURE PROSPECTS

Negative spectral index + LoTSS sensitivity = many more of the parent sample could be detected in future LoTSS data releases

LOFAR-VLBI: FUTURE PROSPECTS

- Constraining AGN contribution to radio emission not trivial even with VLBI
- Cloverleaf has radio jet and 10x
 radio excess, but not detected with EVN
- Quasars with no apparent radio excess can be jet-dominated
- LOFAR-VLBI resolution could help determine if high T_B?

Hartley et al. 2019

LOFAR-VLBI: FUTURE PROSPECTS

- Resolving interactions, inflows, feedback effects on ~100 pc scales at high redshift with ALMA
- In combination with LOFAR to spatially resolve radio emission from star formation
- Exploring radio—infrared correlation on small-scales, cosmic rays from stellar feedback?

Stacey et al. in prep

LOFAR-VLBI: FUTURE PROSPECTS

- Lensed dusty star-forming galaxies from H-ATLAS
- 6/9 H-ATLAS lenses detected in old LOFAR H-ATLAS data
- Targets for long baselines in combination with ALMA

SUMMARY

- 3 lensed quasars in LoTSS DR1 were detected and have radio emission consistent with star formation
- Many more lensed quasars in the parent sample will be detected in future LoTSS releases
- Future long-baseline campaigns can help disentangle AGN/SF, resolve radio—infrared in DSFGs, investigate AGN and stellar feedback in combination with multiwavelength data