

Interferometric and beam-formed observations of the Sun with LOFAR: Present situation and future challenges

HELLO!

I am Pietro Zucca

LOFAR telescope Scientist Solar and Space weather observations zucca@astron.nl

2

ASTRON visiting Students

Anshu Kumari

Radio Astronomy Field Station, Gauribidanur Indian Institute of Astrophysics, Bangalore, India

Hongyu Liu KASI - Korea Astronomy and Space Science Institute, Daejeon, Republic of Korea

Pei Jin Zhang School of Earth and Space Sciences University of Science and Technology of China Hefei, Anhui, China

Summary

X Observing the Sun with LOFAR
X Three consecutive shock signatures
X Open Challenges and Future Work

Observing the Sun with With LOFAR

5

The Radio Sun

٠

 Propagating exciter in a quasi-static atmosphere or expanding loops (CME):

AST<mark>RON</mark>

8

LOFAR

• A set of beams around the Sun in order to recreate a micropixel map.

Interferometric mode

 the complex visibility, V(u,v), is the 2D Fourier transform of the brightness on the sky, T(x,y)

Interferometric

• Spatial resolution (remote and international baselines)

Tied-Array

 Limited spatial resolution (only core stations)

04/08/2019

Using long baseline

Validating LOFAR observations – Comparison with NRH

Comparison of LOFAR imaging with NRH

Comparison of LOFAR imaging with NRH

Stokes I 20 40 60 80 Frequency 001 120 140 160 180 14:52:48 15:07:12 15:21:36 15:36:00 15:50:24 Start Time: 2014-08-25 14:40:00

NRH 150MHz 2014-08-25T15:20:38

Comparison of LOFAR imaging with NRH

Imaging of a Type IV radio burst

Liu, Zucca, Cho et al. in prep.

Shock Signatures in the Corona

Type II radio burts

LASCO-C2 2015-10-16 12:48:04 LOFAR 2015-10-16T12:49:01.1 AIA2015-10-16 12:48:58

LASCO-C2 2015-10-16 12:48:04 LOFAR 2015-10-16T12:50:49.0 AIA2015-10-16 12:50:46

LASCO-C2 2015-10-16 12:48:04 LOFAR 2015-10-16T12:57:36.9 AIA2015-10-16 12:57:34

LASCO-C2 2015-10-16 12:48:04 LOFAR 2015-10-16T12:58:49.0 AIA2015-10-16 12:58:46

EUV running difference

 $H_z 0$

600

LASCO-C2 2015-10-16 12:48:04 LOFAR 2015-10-16T12:58:49.0

27

Coronal B-Field diagnostics

using radio polarization

Interferometric observations

Temporal Resolution: 160 ms Spectral Resolution: 195 kHz

Using the remote stations we can achieve ~13 arcsec at 50 MHz

Kumari, Zucca et al. in prep

Full Stokes observations

Kumari, Zucca et al. in prep

30

Estimation of B -field along Type III bursts

Let's summarize some concepts

Loi	ng Baselines	
Х	Use remote and	

international

baselines

Full spectro-imagery Polarisation

X Understand the X B-field diagnostics origin of fine structures

You can find me at

X @pietrozucca

X zucca@astron.nl

H,0

Extra Slides

Questions CME

First Imaging of a Type II below 80 MHz

LOFAR LBA Spectrum

SOHO LASCO C2 26-Oct-2013 09:36 UT

Zucca et al. 2018 A&A

Multi-viewpoint observations • Using STEREO and SOHO the CME can be triangulated and reconstructed in 3D

CME speed and radio emission

• Expansion of the flank slower than the apex

Triangulation of CME using Rouillard et al. ApJ (2016) method

Zucca et al. A&A (2014)

Zucca et al. A&A (2014)

Estimating the Mach number

3D reconstruction – Mach Number

Mach number calculation using the CME front propagation and the local Alfven Speed.

Rouillard et al. ApJ (2016) method

Mach number at the flank 1.4 to 1.6

3D – Shock geometry

□ The geometry of the shock was obtained comparing the b-field orientation with the normal to the CME front.

□ The flank of the CME shows a quasiperpendicular geometry.

Extra Slides

Questions B-Field

B field Estimation

Questions Scattering

Height vs Plasma frequency

Density - Comparison

Questions resolution

Spatial Resolution

Spatial Resolution

Spatial Resolution

