2025-10-25 09:47 1/16 Juropa decommissioned

Installation and Processing on Juropa

Here will be some notes on the Juropa installation and how to use the software on Juropa at the Juelich
Supercomuting Centre.

Work in progress but useful anyhow. The next section Using Juropa for LOFAR Processing contains the
information you need to use the system as of May 2014. The sections below these up to date
information are kept for archiving purpose (still useful).

Using Juropa for LOFAR Processing

Here are the most recent information on how to make use of Juropa for LOFAR Processing. Last edit
June 2014.

Account

First of all you need an account on the system. The Project leader is Matthias Hoeft and the Project ID
is HTBOO (needed for registration). The following website contains all necessary links for allocating
computing time in the Julich Supercomputing Centre (JSC). Click on the link “User Accounts for
projects on JUQUEEN, JUROPA,...” and follow the instructions.
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Services/|]SConline/ComputingTime/_node.html

german version:
http://www.fz-juelich.de/ias/jsc/DE/Leistungen/Dienstleistungen/)]SCOnline/Rechenzeitvergabe/ _node.h
tml

Get in contact with Matthias so he can sign your account application and initiate the next steps.

Acquiring Data

Take a look at this site on how to get the data from the LTA
http://www.lofar.org/operations/doku.php?id=public:lta_howto

To download data from the web you need the full filename. You can look those up in the catalog
http://lofar.target.rug.nl/Lofar

The Juelich Http download server is here

https://lofar-download.fz-juelich.de/

For Sara

https://lofar-download.grid.sara.nl/

If you want to do a direct srm copy you need a Grid Certificate and to Register in the Virtual
Organization (VO) as a Lofar User.

Grid Certificate

To get direct srm copy access to the LTA storage you need a Grid Certificate.
Its best to ask around in your institute where to get and how to install such a certificate. General
information about german grid certificates can be found here:

LOFAR Wiki - https://www.astron.nl/lofarwiki/

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Services/JSConline/ComputingTime/_node.html
http://www.fz-juelich.de/ias/jsc/DE/Leistungen/Dienstleistungen/JSCOnline/Rechenzeitvergabe/_node.html
http://www.fz-juelich.de/ias/jsc/DE/Leistungen/Dienstleistungen/JSCOnline/Rechenzeitvergabe/_node.html
http://www.lofar.org/operations/doku.php?id=public:lta_howto
http://lofar.target.rug.nl/Lofar
https://lofar-download.fz-juelich.de/
https://lofar-download.grid.sara.nl/

Last update:
2014-09-29 12:25

http://dgi-2.d-grid.de/zertifikate.php

public:processing_at_juropa https://www.astron.nl/lofarwiki/doku.php?id=public:processing_at _juropa&rev=1411993532

SRM Copy from Juropa

There is guide from Hanno Holties which is sadly not applicable to Juropa anymore. But it still contains
useful information
http://www.lofar.org/operations/doku.php?id=public:srmclientinstallation&#walkthrough)

Only the following steps are necessary on Juropa:

Store your private key in $HOME/ .globus/userkey.pem

Execute:

chmod 600 $HOME/.globus/userkey.pem

Store your signed certificate in $HOME/ .globus/usercert.pem
Then you have to generate a proxy. Simply source the script

. /lustre/jhomel7/htb00/htb003/env_srm.sh
and then you can create your proxy
grid-proxy-init -bits 2048
Test data retrieval:

srmcp -server mode=passive
srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lofar/ops/fifotest/filelM
file:///filelM

When copying data with the -jobfile option, keep in mind that there is a 30min cpu limit on the login
node. Meaning your srmcp should be shorter that 30min.

LOFAR Software

The LOFAR Software Framework is installed in the home directory of user htb003. You load the
environment with

. /lustre/jhomel7/htb00/htb003/env_lofar.sh

This loads Release version 2.1 (in the future probably always the latest release). You can also load a
2.3 version (env_lofar_2.3.sh).
There is more software available:

e Casapy 4.2 - env_casapy.sh
e Karma - env_karma.sh
e losoto - env_losoto.sh

In addition you might need a copy of the measurement data

https://www.astron.nl/lofarwiki/ Printed on 2025-10-25 09:47

http://dgi-2.d-grid.de/zertifikate.php
http://www.lofar.org/operations/doku.php?id=public:srmclientinstallation&#walkthrough

2025-10-25 09:47 3/16 Juropa decommissioned

/lustre/jhomel7/htb00/htb003/dataCEP
Put it in your home directory and point to it in a file .casarc (just contains:“measures.directory:
[yourhome]/dataCEP”)

If you require access to the GlobalSkyModel database, there is a copy of the database from the CEP
Cluster (hopefully) running on the Juropa login node juropa02. Access the databse “gsm” on port
51000 with user “gsm” and pass “msss”

You can now run and test the executables on the login node from “lofar/release/bin” or run python
scripts (your own or pipeline scripts in “local/lib/python2.7/site-packages/lofarpipe/recipes”).

To run your jobs on the compute nodes you first have to setup and submit a job via the batch system.
A detailed description can be found on the Juropa homepage

'http://www.fz-
juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/Userinfo/Quickintroduction.html'

Here is a simple example of the procedure. Basically you use two scripts. One to configure the job and
one to setup the environment for your program and run it.

Do not get confused by the use of comments '#'. The '#' in front of MSUB commands is necessary for
the command to be recognized from the Moab batch system.

You submit the job with the command “msub [yourscript]”. Check your status with “showq -u
‘username' ”. To see the whole machine with a gui try the “llview” program.

Contents of 'lofarmsub.sh':

#!/bin/bash -x

#MSUB -N Lofar-test

just the name

#MSUB -1 nodes=1:ppn=16

#MSUB -1 walltime=00:30:00

#MSUB -e error.txt

if keyword omitted : default is submitting directory
#MSUB -0 output.txt

if keyword omitted : default is submitting directory
#MSUB -M your@mail.de

#Mailadress

#MSUB -m eab

#send mail on end, abort, begin
./lofarCalibratorPipelinePy2.7.sh

The walltime is the time your job will be running on the machine. If it is to low and the job is not
finished it will be killed. Is it to high your job might have to wait longer in queue but only the real
computing time will be booked.

The maximum walltime is 24h.

It is a good practice to name the log files error and output with some job specific parameters and
maybe the date.

You can choose to have mails send to you about the status of your job.

Contents of 'lofarCalibratorPipelinePy2.7.sh' (the environment variables are the same as in the
env_|ofar.sh. you could use just that script first before using your custom environments):

#/bin/sh!

LOFAR Wiki - https://www.astron.nl/lofarwiki/

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/UserInfo/QuickIntroduction.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/UserInfo/QuickIntroduction.html

Ii?)sit4':](r))g?2t§:12-25 public:processing_at_juropa https://www.astron.nl/lofarwiki/doku.php?id=public:processing_at _juropa&rev=1411993532

#start of jobscript

export OMP_NUM THREADS=16

#

#

export PYTHONPATH=/lustre/jhomel7/htb00/htb003/1local/lib/python2.7/site-
packages: $PYTHONPATH

export
PYTHONPATH=/lustre/jhomel7/htb00/htb003/1lofar/release/lib/python2.7/site-
packages: $PYTHONPATH

#

export PATH=/lustre/jhomel7/htb00/htb003/1local/bin:$PATH

export PATH=/lustre/jhomel7/htb00/htb003/lofar/release/bin:$PATH

export PATH=/lustre/jhomel7/htb00/htb003/lofar/release/sbin:$PATH

#

export

LD LIBRARY PATH=/lustre/jhomel7/htb00/htb003/lofar/release/lib:$LD LIBRARY P
ATH

export

LD LIBRARY PATH=/lustre/jhomel7/htb00/htb003/lofar/release/1ib64:$LD LIBRARY
_PATH

export

LD LIBRARY PATH=/lustre/jhomel7/htb00/htb003/local/lib:$LD LIBRARY PATH
export

LD LIBRARY PATH=/lustre/jhomel7/htb00/htb003/1local/lib64:$LD LIBRARY PATH

#

export LOFARROOT=/lustre/jhomel7/htb00/htb003

#

module load gsl

module load GCC/4.6.3

#

/lustre/jhomel7/htb00/htb003/lofar/release/bin/msss target pipeline.py
/lustre/jhomel7/htb00/htb003/pipeline tests/Pipeline/target pipeline/Observa
tion64406 -c
/lustre/jhomel7/htb00/htb003/1lofar/release/share/pipeline/pipeline.cfg --job
target test ompl6 descfile -d

Simply replace the pipeline call with the command you want to run in your job. Example of Alexanders
bbs test: /lustre/jhome9/lofar/zdv596/LOFAR-Release-1_14/lofar/release/bin/calibrate-stand-alone -v -n
-f L104244 SB200_uv.dppp.MS BBS.parset skymodel.parset

One important remark for your working directory. Use the Filesystem mounted under $WORK for your
data and jobs.

From the Juropa home page:

$WORK

File system for large temporary files with high I/O bandwidth demands (scratch file system). No
backup of files residing here. Files not used for more than 28 days will be automatically deleted!

Jobs in parallel

(this section has to be reedited because of a bug involving the PSI_WAIT parameter. for working

https://www.astron.nl/lofarwiki/ Printed on 2025-10-25 09:47

2025-10-25 09:47 5/16 Juropa decommissioned

multinoe compatible scripts as Bjoern for the moment. | will edit this section with the correct
information after 16.6.14) You can start one job for every independent piece of data. You can use
your old scripts and the pipeline scripts but every subtask will be processed in serial on one node. So
typically you only allocate one node for your jobs.

To circumvent this, start the subprocesses in the python scripts in a different manner. Use the
mpiexec command to start your subprocess. The Parastation MPI Demon will then allocate free
resources to your subprocess when available. For this behavior the environment variable PSI_WAIT
has to be set. This means you can allocate the partition you want to work on with more than one
node. Run your script and whenever you use a subprocess call use mpiexec with number of processes
equal to one (np=1)

You can have up to 16 processes per node (eight cpus + smt mode). How many of these processes
are allocated to your np=1 option depends on the number of threads you want to have for openMP.
So for OMP_NUM_THREADS=4 you will be able to run 4 subprocesses on one node. With
OMP_NUM_THREADS=16 one subprocess per node and with OMP_NUM_THREADS=1 you will have 16.
As an example lets look at a part of a script from Andreas (run_NDPPPs.py):(in progress)

The snippet shows the the subprocess call with subprocess.Popen and how their return is handled.
What has to be executed is in the list of tupels “cmds”. Where the first entry is the executable and
the second a temporary parset file. Hence the os.remove after the return. The process is put into a list
of processes and the function returns when this list is empty.

while True:
while cmds and len(processes) < max_ task:
task = cmds.pop()
print time.asctime()," : ",list2cmdline(task)
processes.append([Popen(task,env=myenv),task[1]])
if waittime:
break
for p in processes:
if done(p[0O]):
if success(p[0]):
os.remove(p[1l])
processes.remove(p)
else:
fail()
if not processes and not cmds:
break
else:
time.sleep(sleeptime)

To use multiple nodes on Juropa the command that is passed to popen has to be changed in the
following way. The first argument is the executable followed by the arguments. The argument for
“/bin/sh” has to be passed as one string and not as additional argument in the list. In this example the
command we want to run consists of the executable and its argument written as tupels in “cmds”.
The mpiexec is executed on one available slot “-np=1" which has the number of processes you
specified with OMP_NUM_THREADS. The argument “-x” passes all environment variables to the
process executed with mpiexec. Then we wait while there are elements left in the list of processes
until all have returned. With the env variable PSI_WAIT=1 we can call more mpiexec than we have
available slots. The mpi demon will handle the execution for us.

for task in cmds:
command = ["mpiexec","-x","-np=1","/bin/sh", "-c", "hostname &&

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last update:
2014-09-29 12:25

public:processing_at_juropa https://www.astron.nl/lofarwiki/doku.php?id=public:processing_at _juropa&rev=1411993532

“+task[0]+" "+task[1]]
print command
processes.append([Popen(command, env=myenv),task[1]])

while True:

for p in processes:
if done(p[0]):
if success(p[0]):

os.remove(p[1l])
processes.remove(p)

else:

print "Error in: ",p[1]
os.remove(p[1l])
processes.remove(p)

if not processes:

break

| hope these information are sufficient for some first tests and experiments.
Good luck and let me know of any problems and feel free to give some feedback.

Old installation guide (still useful information, but irrelevant

for users)

The following libraries with given versions are installed in the home of user htb003 on Juropa.
[/lustre/jhome17/htb00/htb003/ [local and lofar]

Library Version
bison 2.5
blitz 0.10
boost 1.44.0
cmake 2.8.5
casacore trunk
casarest 8741
cfitsio 3240
fftw 3.2.2
flex 2.5.35
hdf5 1.8.4
libpng 1.5.6
libpgxx 3.1
log4cplus 1.0.4
matplotlib 1.2.1
m4 1.4.16
monetdb python client|11.15.7
numpy 1.7.1
OpenBLAS 0.2.5

https://www.astron.nl/lofarwiki/

Printed on 2025-10-25 09:47

2025-10-25 09:47

7/16

Juropa decommissioned

Library Version
PostgreSQL 9.1.2
pyrap trunk
python 2.7.5
scons 1.3.0
setuptools 0.6c11
wcslib 444
unittest-xml-reporting |1.5.0
pyfits 3.1.2
pPYywCcs 1.10.2
scipy 0.12.0
argparse 121
libiberty

LOFAR 1.16

Additional software for post processing requested by users:

Package|Version

SIP 4.15.1
PyQt4 |4.10.3
iPython |[1.1.0

casapy |41.0.24668

LTA Installation on Juropa

The operating system is:

SUSE Linux Enterprise Server 11 (x86 64)

VERSION = 11
PATCHLEVEL = 1

With kernel version:

Linux 2.6.32.59-0.3-default x86 64 GNU/Linux
The current working installation is in:
/lustre/jhomel7/htb00/htb003/lofar/release

Some things have to be Changed in order to compile and run everything on Juropa.

General Compile settings

There are unresolved issues with older versions. Tests with gcc4.3.4 and gcc4.4.6 gave the error:

File "[install dir]/lofar/release/lib/python2.6/site-
packages/lofar/parmdb/ init .py", line 112, in getDefValues

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Ii?)sit4':](r))g?2t§:12-25 public:processing_at_juropa https://www.astron.nl/lofarwiki/doku.php?id=public:processing_at _juropa&rev=1411993532

return self. getDefValues (parmnamepattern)
TypeError: No to python (by-value) converter found for C++ type:
casa: :Record

The compiler suite has to be changed to gcc4.6.3. You do this with the command:
module load GCC/4.6.3

You also have to load the gsl module

module load gsl

Set environment variables:

export CC=/usr/local/gcc/gcc-4.6.3/bin/gcc
export CXX=/usr/local/gcc/gcc-4.6.3/bin/g++

Using gcc4.6.3 gives the error

File "[install dir]/local/lib/python2.6/site-packages/pyrap.tables-
trunk r332-py2.6-1linux-x86 64.egg/pyrap/tables/table.py", line 1023, in
addcols
self. addcols (tdesc, dminfo, addtoparent)
TypeError: No registered converter was able to produce a C++ rvalue of type
int from this Python object of type numpy.int32

This can be corrected by changing the order of the “pyrap.tables” import in the node script
“imager_prepare.py”

Change from:

from future import with statement

import sys

import shutil

import os

import subprocess

import copy

from lofarpipe.support.pipelinelogging import CatchLog4CPlus
from lofarpipe.support.pipelinelogging import log time

from lofarpipe.support.utilities import patch parset

from lofarpipe.support.utilities import catch segfaults

from lofarpipe.support.lofarnode import LOFARnodeTCP

from lofarpipe.support.utilities import create directory
from lofarpipe.support.data map import DataMap

from lofarpipe.support.subprocessgroup import SubProcessGroup

import pyrap.tables as pt

to

https://www.astron.nl/lofarwiki/ Printed on 2025-10-25 09:47

2025-10-25 09:47 9/16 Juropa decommissioned

from future import with statement

import sys

import shutil

import os

import subprocess

import copy

import pyrap.tables as pt

from lofarpipe.support.pipelinelogging import CatchLog4CPlus
from lofarpipe.support.pipelinelogging import log time

from lofarpipe.support.utilities import patch parset

from lofarpipe.support.utilities import catch segfaults

from lofarpipe.support.lofarnode import LOFARnodeTCP

from lofarpipe.support.utilities import create directory
from lofarpipe.support.data map import DataMap

from lofarpipe.support.subprocessgroup import SubProcessGroup

Libiberty

The change of the compiler suite brings additional problems. The system paths change to custom
locations which prevents the finding of the correct version of the library “libiberty.a”. The one found is
missing the compiler flag -fPIC so it can be linked dynamically. You have to compile it yourself (or
copy the correct one from the old path «- needs checking).

PYRAP

Pyrap will not compile because it will not find the glibc libraries as they are not in the standard
location anymore. To correct this you have to edit the pyrap SConsript in pyrap/libpyrap/trunk from

env = Environment(ENV = { 'PATH' : os.environ['PATH'],
'"HOME' : os.environ['HOME']
b

to

env = Environment(ENV = os.environ,

Note: you have to use the trunk version and not the latest release because otherwise pyrap tables
wont work. Also add the the compile option -enable-rpath. Use “batchbuild-trunk.py” for installation
instead of “batchbuild.py”.

FFTW

For the fftw library you have to add the option “-enable-threads” for the compiler.

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last update:
2014-09-29 12:25

SCIPY

public:processing_at_juropa https://www.astron.nl/lofarwiki/doku.php?id=public:processing_at _juropa&rev=1411993532

For scipy add the environment variable UMFPACK="None".

Blitz

Version 0.9 did not compile. Version 0.10 works fine.

CMake

Tried using the system installed CMake which is also version 2.8.5. There are Problems with some
“find” scripts (LAPACK,BLAS). | remember casacore and Lofar would not install as they should, forgot
the details though as the self installed version does what it should. Maybe one should look into it in
the future because what CMake to use should not matter.

Casacore

Need to use the trunk version instead of release 1.5 for functionality. Using the buildscript options,
Casacore is missing support for hdf5 which is needed for the final steps of the imaging pipeline.
Added hdf5 support as well as OpenMP and Threads by hand in the ccmake interface. ToDo: add
options to buildscript

LOFAR

The system installed libpng was hiding the selfcompiled version which lead to problems during
program execution. The proper path to libpng library and include dir have to be set in cmake. Same
goes for the selfcompiled libiberty. ToDo: add options in cmake.build file (at least for libpng since its
part of standard installation).

The variants file GNU.cmake has to be edited to set the path to the new compiler version

GNU compiler suite
set (GNU COMPILERS GNU C GNU CXX GNU Fortran GNU ASM)

set(GNU C /usr/local/gcc/gcc-4.6.3/bin/gcc) # GNU C compiler
set (GNU_ CXX /usr/local/gcc/gcc-4.6.3/bin/g++) # GNU C++ compiler
set(GNU Fortran /usr/local/gcc/gcc-4.6.3/bin/gfortran) # GNU Fortran
compiler

set (GNU_ASM /usr/local/gcc/gcc-4.6.3/bin/gcc) # GNU assembler

SSH support

Logging into compute nodes via ssh is not permitted on the system. Subprocesses have to be started
on the one rented compute for now via shell or mpiexec command. Distribution to multiple nodes is in
the works.

https://www.astron.nl/lofarwiki/ Printed on 2025-10-25 09:47

2025-10-25 09:47 11/16 Juropa decommissioned

lofarpipe/support/remotecommand.py has to be edited to circumvent ssh for locahost job spawning
(svn diff, see extra section)

File copy

Since the Juropa cluster uses a shared filesystem every data should be (read: HAS to be) present at

job start to not waste computing time. The login nodes are supposed to be used for job preparation

and analysis afterwards. So we do not need to copy data to the working directory (quota is limited!).
The change for that is in lofarpipe/recipes/nodes/imager_prepare.py (svn diff, see extra section).

Imaging Pipeline

Because the datacopy to the working directory will not be done automatically the data has to present
in your working directory set in pipeline.cfg plus subfolder jobname. Somthing like
working_dir/imaging_pipeline/subbands

In lofarpipe/recipes/nodes/imager_prepare.py in the call to rfi_console the “indirect read” option has
to be removed because of insufficient write access on the target machine (some folder you are not
supposed to use as normal user)

GSM Database

A local version of the GSM Database has to be used. At the moment it is running on Juropa02 but has
to be restarted after downtimes or after the demon used up its 30min wallclock time. The database is
in the home folder of user zdv596 and can be started with

cd /lustre/jhome9/lofar/zdv596
monetdbd start gsm
monetdb start gsm

monetdb is installed in /lustre/jhome9/lofar/zdv596/LOFAR-Release-1_14/local/bin
How to install a local GSM Database take a look at this
http://www.lofar.org/wiki/doku.php?id=Ita:software_stack installation#gsm_database_installation

gsmutils.py

The changes made during release 1.14 (after initial release) break the functionality of the database
access on Juropa. You can revert back to the initial release of 1.14 or use the fix mentioned below.
The error is as follows:

ERROR:node.jj29109.1imager create dbs:expected fluxes in fov raise exception:
GDK reported error.

IBATfetchjoin(tmpr 2277,tmp 4347) does not hit always (|bn|=0 != 46216=|1])
=> can't use fetchjoin.

ERROR:node.jj29109.1imager create dbs:failed creating skymodel

LOFAR Wiki - https://www.astron.nl/lofarwiki/

http://www.lofar.org/wiki/doku.php?id=lta:software_stack_installation#gsm_database_installation

Ii?)sit4':](r))g?2t§:12-25 public:processing_at_juropa https://www.astron.nl/lofarwiki/doku.php?id=public:processing_at _juropa&rev=1411993532

Traceback (most recent call last):

File "/lustre/jhomel7/htb00/htb003/LOFAR-R14-
P275/1lofar/release/lib/python2.7/site-
packages/lofarpipe/recipes/nodes/imager create dbs.py", line 470, in
<module>

_jobid, jobhost, jobport).run with stored arguments())

File "/lustre/jhomel7/htb00/htb003/LOFAR-R14-
P275/lofar/release/lib/python2.7/site-
packages/lofarpipe/support/lofarnode.py", line 85, in
run_with stored arguments

returnvalue = self.run with logging(*self.arguments)

File "/lustre/jhomel7/htb00/htb003/LOFAR-R14-
P275/lofar/release/lib/python2.7/site-
packages/lofarpipe/support/lofarnode.py", line 59, in run with logging

return self.run(*args)

File "/lustre/jhomel7/htb00/htb003/LOFAR-R14-
P275/1lofar/release/lib/python2.7/site-
packages/lofarpipe/recipes/nodes/imager create dbs.py", line 71, in run

monet db password, assoc_ theta)
TypeError: 'int' object is not iterable

Bart Scheers provided a temporary fix for this issue. You need to change the configuration of your
database.

Stop gsm database set nthreads property to 1:
monetdb stop gsm

monetdb set nthreads=1 gsm
monetdb start gsm

imager_prepare.py

Prevent datacopy when working on local host only. No “indirect_read” supported on Juropa.
SVN diff for lofarpipe/recipes/nodes/imager_prepare.py

Index: CEP/Pipeline/recipes/sip/nodes/imager prepare.py

--- CEP/Pipeline/recipes/sip/nodes/imager prepare.py (revision 25127)
+++ CEP/Pipeline/recipes/sip/nodes/imager prepare.py (working copy)
@@ -10,6 +10,7 @@

import os

import subprocess
import copy
+import pyrap.tables as pt
from lofarpipe.support.pipelinelogging import CatchLog4CPlus
from lofarpipe.support.pipelinelogging import log time
from lofarpipe.support.utilities import patch parset
@@ -19,7 +20,7 @@
from lofarpipe.support.data map import DataMap

https://www.astron.nl/lofarwiki/ Printed on 2025-10-25 09:47

2025-10-25 09:47 13/16 Juropa decommissioned

from lofarpipe.support.subprocessgroup import SubProcessGroup

-import pyrap.tables as pt
+#import pyrap.tables as pt

Some constant settings for the recipe

_time slice dir name = "time slices"
@@ -140,37 +141,44 @@
if input item.skip == True:

exit status =1 #

- # construct copy command

- command = ["rsync", "-r", "{0}:{1}".format(

- input _item.host, input item.file),
- “{0}".format(processed ms dir)]

+
+ self.logger.debug(input item.host)

+ self.logger.debug(self.host)

+ # skip the copy if machine is the same (execution on
localhost).

+ # make sure data is in the correct directory. for now:
working dir/trunk imager regression/subbands

+ if input_item.host != "localhost":

+

+ # construct copy command

+ command = ["rsync", "-r", "{0}:{1}".format(

+ input item.host, input item.file),

+ "{0}".format(processed ms dir)]

- self.logger.debug("executing: " + " ".join(command))

+ self.logger.debug("executing: " + " ".join(command))
- # Spawn a subprocess and connect the pipes

- # The copy step is performed 720 at once in that case which
might

- # saturate the cluster.

- copy process = subprocess.Popen(

- command,

- stdin=subprocess.PIPE,

- stdout=subprocess.PIPE,

- stderr=subprocess.PIPE)

+ # Spawn a subprocess and connect the pipes

+ # The copy step is performed 720 at once in that case which
might

+ # saturate the cluster.

+ copy process = subprocess.Popen(

+ command,

+ stdin=subprocess.PIPE,

+ stdout=subprocess.PIPE,

+ stderr=subprocess.PIPE)

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last update:
2014-09-29 12:25

public:processing_at_juropa https://www.astron.nl/lofarwiki/doku.php?id=public:processing_at _juropa&rev=1411993532

Wait for finish of copy inside the loop: enforce single tread
copy
(stdoutdata, stderrdata) = copy process.communicate()

Wait for finish of copy inside the loop: enforce single

copy
(stdoutdata, stderrdata) = copy process.communicate()

exit status = copy process.returncode
exit status = copy process.returncode

#1if copy failed log the missing file and update the skip fields
if exit status != 0O:
input item.skip = True
copied item.skip = True
self.logger.warning(
if exit status != 0O:
input item.skip = True
copied item.skip = True
self.logger.warning(
"Failed loading file:

{0}".format(input item.file))

+

self.logger.warning(stderrdata)
self.logger.warning(stderrdata)

self.logger.debug(stdoutdata)
self.logger.debug(stdoutdata)

return copied ms_map

@@ -298,7 +306,8 @@

{0}".format(

construct copy command
self.logger.info(time slice)
command = [rficonsole executable, "-indirect-read",
command = [rficonsole executable,
"-indirect-read",
time slice]
self.logger.info("executing rficonsole command:

" ".join(command)))

remotecommand.py

Extra Path variable for remote systems where python is not installed in the same place as on the

master node.

Prevent ssh commands entirely as they are not supported on Juropa. Just a switch for localhost. SVN

diff:

https://www.astron.nl/lofarwiki/ Printed on 2025-10-25 09:47

2025-10-25 09:47 15/16 Juropa decommissioned

Index: CEP/Pipeline/framework/lofarpipe/support/remotecommand.py

--- CEP/Pipeline/framework/lofarpipe/support/remotecommand.py (revision
25127)
+++ CEP/Pipeline/framework/lofarpipe/support/remotecommand.py (working
copy)
@ -111,13 +111,29 @@

process.kill = lambda : os.kill(process.pid, signal.SIGTERM)

return process

+def run via local(logger, command, arguments):
commandstring = ["/bin/sh","-c"]
for arg in arguments:
command = command + " " + str(arg)

commandstring.append(command)

process = spawn_process(commandstring, logger)

process.kill = lambda : os.kill(process.pid, signal.SIGKILL)
return process

+ 4+ + + + + + +

def run via ssh(logger, host, command, environment, arguments):

Dispatch a remote command via SSH.

We return a Popen object pointing at the SSH session, to which we add a
kill method for shutting down the connection if required.

+

+ hack/

+ if host is localhost run without ssh

+ /hack

+ if host == "localhost":

+ logger.debug("Running command locally")

+ return run via local(logger, command, arguments)
logger.debug("Dispatching command to %s with ssh" % host)
ssh cmd = ["ssh", "-n", "-tt", "-x", host, "--", "/bin/sh", "-c"]

@@ -214,6 +230,7 @@

self.host,
self.command,
{
+ "PATH": os.environ.get('PATH'),

"PYTHONPATH": os.environ.get('PYTHONPATH'),
“LD LIBRARY PATH": os.environ.get('LD LIBRARY PATH')

}

copier.py

The copy process of the Intrument files used in the target pipeline has to be changed because rsync is
not supported between nodes. Change to a simple copy command.

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Ii?)sitigg?ztg:lz-zs public:processing_at_juropa https://www.astron.nl/lofarwiki/doku.php?id=public:processing_at _juropa&rev=1411993532

recipes/nodes/copier.py

53,56¢53

< if source node=="localhost":

< command = ["cp", "-
r*,"{0}".format(source path),"{0}".format(target path)]
< else:

< command = ["rsync", "-r",

Vv

command = ["rsync", "-r",

parset.py

Changed the “output_dir” in “patch_parset” to a directory visible from all nodes.
Should maybe be changed to the working directory?!

From:
https://www.astron.nl/lofarwiki/ - LOFAR Wiki

https://www.astron.nl/lofarwiki/doku.php?id=public:processing_at_juropa&rev=1411993532 |'-1I|_:|-

Permanent link:

Last update: 2014-09-29 12:25

https://www.astron.nl/lofarwiki/ Printed on 2025-10-25 09:47

https://www.astron.nl/lofarwiki/
https://www.astron.nl/lofarwiki/doku.php?id=public:processing_at_juropa&rev=1411993532

	[Installation and Processing on Juropa]
	Installation and Processing on Juropa
	Using Juropa for LOFAR Processing
	Account
	Acquiring Data
	Grid Certificate
	SRM Copy from Juropa
	LOFAR Software
	Jobs in parallel

	Old installation guide (still useful information, but irrelevant for users)
	LTA Installation on Juropa
	General Compile settings
	Libiberty
	PYRAP
	FFTW
	SCIPY
	Blitz
	CMake
	Casacore
	LOFAR
	SSH support
	File copy
	Imaging Pipeline

	GSM Database
	gsmutils.py
	imager_prepare.py
	remotecommand.py
	copier.py
	parset.py

