
2025-03-02 03:27 1/11 Building the LOFAR software stack

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Building the LOFAR software stack

LOFAR uses CMake as build tool. This page provides information that is specific for the use of CMake
for the LOFAR software. It will focus on how to write CMakeLists.txt files for LOFAR, on LOFAR-
specific CMake macros, etc.

For general information on CMake, please refer to the CMake documentation pages.

For the old guys among us: See Why we migrated from Autotools to CMake for some information
about the rationale of moving from Autotools to CMake in the past…

Prequisites

You will need CMake 2.6 or later in order to build the LOFAR software. Most development was done
using CMake 2.6.2. Most Linux distributions contain CMake as a binary package. If yours doesn't, or if
it's too old, you can download the CMake sources and build CMake yourself.

Getting Started

The CMake build environment follows the same naming convention rules w.r.t. build directory names
as the old Autotools-based build environment. However, the per-package configure-compile-install
cycle has been replaced by one global cycle. This means that libraries and binaries will no longer be
built in a subdirectory of each source package, but in a separate build-directory which will mirror the
directory structure of the source tree. For those of you that do out-of-source-tree builds with rub this
is nothing new.

Step 1

Make sure you have a working copy of (part of) the LOFAR software tree. Please refer to The LOFAR
Subversion Repository page for more information on how to check out LOFAR software.

$ cd $HOME
$ svn checkout https://svn.astron.nl/LOFAR/trunk LOFAR

Alternatively, you can do a minimal checkout of the LOFAR tree and let the build system do a
checkout of the parts that are needed for your specific build.

$ cd $HOME
$ svn checkout -N https://svn.astron.nl/LOFAR/trunk LOFAR
$ svn update LOFAR/CMake

Note On newer versions of svn you should probably use –depth=immediates instead of -N, but I
can't get this to work with it. - Adriaan

http://www.cmake.org
http://www.cmake.org/cmake/help/documentation.html
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:rationale
http://www.cmake.org/cmake/resources/software.html
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn

Last
update:
2017-03-09
09:16

public:user_software:documentation:lofar-cmake https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofar-cmake

https://www.astron.nl/lofarwiki/ Printed on 2025-03-02 03:27

Step 2

Create a build directory, preferably outside of the source tree. The name of the directory must adhere
to the naming conventions described in section 3.6 of LOFAR Build Environment. So, for example,
when using the GNU compiler suite to build a debug version of the software, you'd have to create a
build directory named gnu_debug.

$ mkdir -p build/gnu_debug

Step 3

Run cmake from the build directory. You must provide the (relative) path to the top-level
CMakeLists.txt file (in this example $HOME/LOFAR). You can give a list of packages to build using
the -DBUILD_PACKAGES option:

$ cd build/gnu_debug
$ cmake -DBUILD_PACKAGES="Package1 Package2" $HOME/LOFAR

If you plan to run make install to install the built software in a directory of your choice (instead of
in the top level build directory), you will have to define CMAKE_INSTALL_PREFIX on the command-
line:

$ cd build/gnu_debug
$ cmake -DBUILD_PACKAGES="Package1 Package2" \
 -DCMAKE_INSTALL_PREFIX:PATH=<installpath> \
 $HOME/LOFAR

Step 4

When CMake completes without errors, you can run make to actually build the software. You can use
the curses-based ccmake (or use make edit-cache) to edit CMake's cache file to modify any of the
cache variables (e.g., which LOFAR packages to build, paths to third-party libraries and/or include
files, etc.).

$ make

If you want the build to continue even when encountering errors in the build process, you can add the
-k flag to the make command. For instance:

$ make -k

If you want the the build executables to be installed as well, add install to the make command as
well:

$ make install

https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=engineering:software:development:lofar_buildenv_manual.pdf

2025-03-02 03:27 3/11 Building the LOFAR software stack

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Note that the install option only works when the make has completed without errors.

Note

Most (but not all!) changes to CMake files (*.cmake or CMakeLists.txt) will be detected by CMake,
and will trigger a (re)run of cmake whenever needed. So typing make is usually sufficient to get a
correct (re)build of the software.

Build Options

Build options can be specified in two ways. The preferred, “static” way of doing this is through the
different variants files. These settings can be overridden by the user, either by setting options on the
command-line when invoking cmake, or by edit them by using the semi-graphical environment
ccmake.

Available Options

The following options are currently available. This is neither an exhaustive, nor an authoritative list. It
merely serves as an example to which global build options may be set.

Option Description Default value
BUILD_DOCUMENTATION Build code documentation OFF
BUILD_SHARED_LIBS Build shared libraries ON
BUILD_STATIC_EXECUTABLES Build statically linked executables OFF
BUILD_TESTING Build test programs ON
LOFAR_SVN_UPDATE Always do an svn update <undefined>
LOFAR_VERBOSE_CONFIGURE Be verbose when configuring ON
USE_BACKTRACE Use backtraces in exceptions ON
USE_LOG4CPLUS Use the Log4Cplus logging package ON
USE_LOG4CXX Use the Log4Cxx logging package OFF
USE_MPI Compile with MPI support OFF
USE_OPENMP Compile with OpenMP support OFF
USE_SHMEM Use shared memory ON
USE_SOCKETS Use network sockets ON
USE_THREADS Use thread support ON
USE_CASACORE Use Casacore installation ON

Some options are mutually exclusive (e.g., USE_LOG4CPLUS, and LOG4CXX cannot be used
simultaneously). These restrictions are checked by the LofarOptions macro. Furthermore, this macro
calls lofar_find_package for each package that is marked to be used. It is a fatal error if that
package cannot be found.

LOFAR_SVN_UPDATE uses three states. When <undefined>, only files that are missing but needed
are updated. When OFF, files are never updated (this is useful if you don't have access to the SVN
server, or if you're working with an exported source tree). When ON, files are always updated.

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:macros#lofaroptions

Last
update:
2017-03-09
09:16

public:user_software:documentation:lofar-cmake https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofar-cmake

https://www.astron.nl/lofarwiki/ Printed on 2025-03-02 03:27

Skeleton of a LOFAR Package

LOFAR packages come in two 'flavors': leaf-packages and meta-packages.

Leaf-packages

Leaf-packages consist of source code. Most of the time this is C++ code, but some leaf-packages
consist purely of Python or Java. A leaf-package usually contains the following directories:

include, containing the public header files (the interface) of the package;
src, containing the source files (the implementation); and
test, containing the test programs (source and/or scripts).

Each of these directories contains a CMakeLists.txt file, but each has a different structure.

The top-level directory

The CMakeLists.txt file in the top-level package directory defines the LOFAR package, lists its
internal and external dependencies, and adds the subdirectories containing the source code.

Define the package

A leaf-package must be defined using the macro lofar_package (see LofarPackage). Calling this
macro ensures that dependent packages are added to the build, and that the compiler's include path
and the list of libraries to link against are setup correctly. The package name must be unique in the
complete source tree.

For example:

lofar_package(BBSKernel 1.0 DEPENDS Blob Common ParmDB)

defines that the package BBSKernel has version 1.0, and depends on the packages Blob, Common,
and ParmDB.

Define external dependencies

Dependencies on external packages must be defined using the macro lofar_find_package (see
LofarFindPackage), which is a wrapper around the CMake command find_package.

include(LofarFindPackage)
lofar_find_package(Boost REQUIRED)
lofar_find_package(Casacore REQUIRED COMPONENTS casa measures ms scimath
tables)

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:macros#lofarpackage
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:macros#lofarfindpackage
http://www.cmake.org/cmake/help/cmake2.6docs.html#command:find_package
http://www.cmake.org/cmake/help/cmake2.6docs.html#command:include

2025-03-02 03:27 5/11 Building the LOFAR software stack

LOFAR Wiki - https://www.astron.nl/lofarwiki/

In this example we see that the Boost package is required, and that a number of Casacore
components are required. It is the task of the FindBoost and FindCasacore modules to search for
the required components and return variables that contain the include path, library path, and a list of
libraries to be linked against.

Add subdirectories

Finally, we should add the subdirectories that contain the header files (include), the source files
(src), and the test programs (test).

add_subdirectory(include/BBSKernel)
add_subdirectory(src)
add_subdirectory(test)

The 'include' directory

The skeleton of the CMakeLists.txt file in the include directory is roughly as follows.

Create symbolic link to include directory

CMake does not install LOFAR packages on a per-package basis as the old Autotools-based build-
environment does. As a result, we must somehow tell other packages where they can find the header
files of packages that they depend on. This is done by creating a symbolic link in the binary include
directory to the current source directory.

execute_process(COMMAND ${CMAKE_COMMAND} -E create_symlink
 ${CMAKE_CURRENT_SOURCE_DIR}
 ${CMAKE_BINARY_DIR}/include/${PACKAGE_NAME})

Header files to install

Header files that must be installed, because they are part of the package's interface, should be listed

install(FILES
 Evaluator.h
 Equator.h
 Exceptions.h
 ...
 DESTINATION include/${PACKAGE_NAME})

The 'src' directory

The skeleton of the CMakeLists.txt file in the src directory is roughly as follows.

http://www.cmake.org/cmake/help/cmake2.6docs.html#command:add_subdirectory
http://www.cmake.org/cmake/help/cmake2.6docs.html#command:add_subdirectory
http://www.cmake.org/cmake/help/cmake2.6docs.html#command:add_subdirectory

Last
update:
2017-03-09
09:16

public:user_software:documentation:lofar-cmake https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofar-cmake

https://www.astron.nl/lofarwiki/ Printed on 2025-03-02 03:27

LofarPackageVersion

LofarPackageVersion is responsible for generating and/or updating the files Package__Version.h,
Package__Version.cc, and version<pkg> (where <pkg> is the name of the current package).

include(LofarPackageVersion)

This line should be the first, or at least, it should appear before any reference is made to the files that
are generated by this macro. In practice, this means that this line should appear before a
lofar_add_library, or lofar_add_bin_program command.

Add a library

Add a library to the current project, using the specified source files.

lofar_add_library(bbskernel
 Package__Version.cc
 Evaluator.cc
 ...
)

The library will be installed in <prefix>/<libdir>, where <libdir> can either be lib, or lib64,
depending on processor architecture and Linux distribution.

Add a binary

Add a binary program to the current project, using the specified source files. The first source file must
contain the main() function. The executable program will be installed in <prefix>/bin.

lofar_add_bin_program(versionbbskernel versionbbskernel.cc)

 If you want to create a non-installable binary, you can use the lofar_add_executable macro.
This macro will take care of linking in all the dependent libraries, but will not mark the binary for
install.

The 'test' directory

LofarCTest

The first line in the CMakeLists.txt file should be

include(LofarCTest)

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:macros#lofarpackageversion
https://www.astron.nl/lofarwiki/lib/exe/detail.php?id=public%3Auser_software%3Adocumentation%3Alofar-cmake&media=engineering:software:bulb_idea_small.png

2025-03-02 03:27 7/11 Building the LOFAR software stack

LOFAR Wiki - https://www.astron.nl/lofarwiki/

This macro will add the current source directory to the compiler's include path, and generate a
wrapper script around the runtest.sh script to define some required environment variables.

Add tests

Next tests can be added, using the lofar_add_test macro

lofar_add_test(tFillRow tFillRow.cc)
lofar_add_test(tJonesCMul3 tJonesCMul3.cc utils.cc)

In the first case the test tFillRow is passed to lofar_add_test() and is a linux shell-script. For the test to
be run it is required to compile tFileRow.cc into an application called tFileRow. In the second case the
test tJonesCMul3 requires tJonesCMul3.cc and utils.cc to be compiled first.

Hence, at minimum the following files would exist in the 'test' directory for C/C++ tests:

CMakeLists.txt
[test_name].sh
[unit_test].cc

For Python tests an extra .run-file is necessary, so that a test directory would at least contain:

CMakeLists.txt
[test_name].sh
[test_name].run
[unit_test].py

For both languages the .sh-file will call runctest with a given test, e.g for the RATaskSpecifiedService:

#!/bin/sh

./runctest.sh tRATaskSpecified

For Python this will not call the .py-file containing the test immediately, but will call the .run-file.

The .run-file will then contain commands related to the Python test facilities (and the actual call to the
file containing the Python test):

#!/bin/bash

Run the unit test
source python-coverage.sh
python_coverage_test "rataskspecifiedservice*" tRATaskSpecified.py

The LOFAR tree uses CMake for both building and testing. In order to test the whole LOFAR tree, issue
the following command from the build directory (build/gnu_debug):

make test

In order to run the test for a specific sub-system, navigate to its sub-directory (not its 'test'-directory)

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:macros#lofarctest

Last
update:
2017-03-09
09:16

public:user_software:documentation:lofar-cmake https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofar-cmake

https://www.astron.nl/lofarwiki/ Printed on 2025-03-02 03:27

and issue the same command. The Test results will be written to files in the sub-directory
'./Testing/Temporary/':

CTestCostData.txt
LastTest.log
LastTestsFailed.log

 You may find it convenient (during development) to just call the Python test script immediately
(from the source directory, not the build directory), instead of calling 'make test' in order to see the
detailed test output immediately.

Meta-packages

A meta-package is a package that consists of one ore more (meta-)packages that are subdirectories
of the current directory. For example, the BBSKernel package is part of the meta-package
Calibration, which in turn is part of the meta-package CEP.

The structure of the CMakeLists.txt file of a meta-package is much simpler than that of an
ordinary package.

Adding a package

Packages are added to the build with the CMake macro lofar_add_package (see LofarPackage).

For example, the CMakeLists.txt file for the Calibration meta-package contains the following
two lines:

lofar_add_package(BBSKernel)
lofar_add_package(BBSControl)

This instructs CMake to add the packages BBSKernel, and BBSControl to the build, unless any of
them was explicitly excluded from the build (e.g., when BUILD_BBSKernel was set to OFF).

 You should not use lofar_package to define a meta-package. Only leaf-packages must be
defined.

Note

It is not an error if the source directory of the added package does not exist (e.g., BBSControl has
not been checked out). CMake will then simply set the option BUILD_BBSControl to OFF, so that it
will be excluded from the build.

https://www.astron.nl/lofarwiki/lib/exe/detail.php?id=public%3Auser_software%3Adocumentation%3Alofar-cmake&media=engineering:software:bulb_idea_small.png
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:macros#lofarpackage

2025-03-02 03:27 9/11 Building the LOFAR software stack

LOFAR Wiki - https://www.astron.nl/lofarwiki/

The top-level LOFAR package

The top-level LOFAR package is a somewhat different meta-package. Its CMakeLists.txt file
contains initialization and finalization sections; code that only needs to be executed once.

Initialization

The first line in the CMakeLists.txt file sets the minimum required version of CMake.

cmake_minimum_required(VERSION 2.6)

LofarInit

Next we include the LofarInit macro file. This file must be included before the project command,
because it will define the compilers to use (by reading the variants files). Note that at this stage the
CMake variable CMAKE_MODULE_PATH is not yet set, so we need to specify the full path and filename
to LofarInit.

include(CMake/LofarInit.cmake)

Project

Next we define the project. This causes CMake to check for the presence of working C and C++
compilers.

project(LOFAR)

LofarGeneral

Then we include the LofarGeneral macro file, which mainly performs a number of checks for the
presence of system header files. This file must be included immediately after the project command.

include(LofarGeneral)

Main part

In the main part, the different meta-packages are added to the build. Note that the user has some
control over which packages will be added to the build by defining BUILD_PACKAGES on the
command-line.

LofarPackage

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:macros#lofarinit
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:macros#lofargeneral

Last
update:
2017-03-09
09:16

public:user_software:documentation:lofar-cmake https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofar-cmake

https://www.astron.nl/lofarwiki/ Printed on 2025-03-02 03:27

First, we need to include the file LofarPackage, which defines two important macros: lofar_package
and lofar_add_package.

include(LofarPackage)

Then, if the user did not define BUILD_PACKAGES, all existing meta-packages will be added to the
build.

if(NOT DEFINED BUILD_PACKAGES)
 lofar_add_package(LCS)
 lofar_add_package(CEP)
 lofar_add_package(RTCP)
 lofar_add_package(SAS)
 lofar_add_package(MAC)
 lofar_add_package(LCU)
 lofar_add_package(SubSystems)

Remember that these packages do not have to be present, but that they will be added to the build, if
they are present.

If the user did define BUILD_PACKAGES, then each of the packages listed will be added to the build.

else(NOT DEFINED BUILD_PACKAGES)
 separate_arguments(BUILD_PACKAGES)
 foreach(pkg ${BUILD_PACKAGES})
 lofar_add_package(${pkg} REQUIRED)
 endforeach(pkg ${BUILD_PACKAGES})
endif(NOT DEFINED BUILD_PACKAGES)

If any of these packages depends on other packages, then these will automatically be added to the
build too. Packages specified in BUILD_PACKAGES are considered required. It is an error if one or
more required packages are missing.

Finalization

When all packages have been processed by CMake, enough information has been gathered to
generate a configuration file.

LofarConfig

The LofarConfig macro will generate the file lofar_config.h from the file
lofar_config.h.cmake and place it in the binary include directory.

include(LofarConfig)

The header file lofar_config.h must be included in each compilation unit before any other header

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:macros#lofarpackage
http://www.cmake.org/cmake/help/cmake2.6docs.html#command:if
http://www.cmake.org/cmake/help/cmake2.6docs.html#command:else
http://www.cmake.org/cmake/help/cmake2.6docs.html#command:separate_arguments
http://www.cmake.org/cmake/help/cmake2.6docs.html#command:foreach
http://www.cmake.org/cmake/help/cmake2.6docs.html#command:endforeach
http://www.cmake.org/cmake/help/cmake2.6docs.html#command:endif

2025-03-02 03:27 11/11 Building the LOFAR software stack

LOFAR Wiki - https://www.astron.nl/lofarwiki/

file.

Links

LOFAR CMake Macros
CMake Equivalent of Autotools Commands and Options
The LOFAR Subversion Repository

From:
https://www.astron.nl/lofarwiki/ - LOFAR Wiki

Permanent link:
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofar-cmake

Last update: 2017-03-09 09:16

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:macros
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofar-cmake:cmake-equiv-autotools
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn
https://www.astron.nl/lofarwiki/
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofar-cmake

	Building the LOFAR software stack
	Prequisites
	Getting Started
	Step 1
	Step 2
	Step 3
	Step 4
	Note

	Build Options
	Available Options

	Skeleton of a LOFAR Package
	Leaf-packages
	The top-level directory
	Define the package
	Define external dependencies
	Add subdirectories

	The 'include' directory
	Create symbolic link to include directory
	Header files to install

	The 'src' directory
	LofarPackageVersion
	Add a library
	Add a binary

	The 'test' directory
	LofarCTest
	Add tests

	Meta-packages
	Adding a package
	Note

	The top-level LOFAR package
	Initialization
	LofarInit
	Project
	LofarGeneral

	Main part
	LofarPackage

	Finalization
	LofarConfig

	Links

