
2025-10-26 22:02 1/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

DPPP

Important

A newer version of this documentation is available at https://www.astron.nl/citt/DP3

Old documentation

DPPP (the Default Preprocessing Pipeline, previously NDPPP for New Preprocessing Pipeline) is the
LOFAR data pipelined processing program. It can be used to do all kind of operations on the data in a
pipelined way, so the data are read and written only once.

DPPP started as a new and faster version of IDPPP. The original differences can be seen here.

DPPP preprocesses the data of a LOFAR observation by executing steps like flagging or averaging.
Such steps can be used for the raw data as well as the calibrated data by defining the data column to
use. One or more of the following steps can be defined as a pipeline. DPPP has an implicit input and
output step. It is also possible to have intermediate output steps.

DPPP comes with quite some predefined steps, but it is possible to plugin arbitrary steps, either
implemented in C++ or Python.

The following steps are possible:

Flagging and Filtering
AOFlagger for automatic flagging in time/freq windows using Andre Offringa's advanced
aoflagger.
Preflagger to flag given baselines, time slots, etc.
UVWFlagger to flag based on UVW coordinates, possibly in the direction of another
source.
MADFlagger for automatic flagging in time/freq windows based on median filtering.
Filter to filter on baseline and/or channel (only the given baselines/channels are kept).
The reader step has an implicit filter.

Averaging
Averager to average data in time and/or freq.

Phase Shifting
PhaseShift to shift data to another phase center.

Demixing to remove strong sources (A-team) from the data.
Demixer to demix in the old way.
SmartDemixer to demix in a new, smarter way.

Station summation
StationAdder to add stations (usually the superterp stations) forming new station(s) and
baselines.

Counter to count the number of flags per baseline, frequency, and correlation. A flagging step
also counts how many visibilities it flagged. Counts can be saved to a table to be plotted later
using function plotflags in python module lofar.dppp.
Data calibration and Data scaling

ApplyCal to apply an existing calibration to a MeasurementSet.
GainCal to calibrate gains using StefCal.

https://www.astron.nl/citt/DP3
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:tools:dppp:diff

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

DDECal to calibrate direction dependent gains.
Predict to predict the visibilities of a given sky model.
H5ParmPredict to subtract multiple directions of visibilities corrupted by an instrument
model (in H5Parm) generated by DDECal.
ApplyBeam to apply the LOFAR beam model, or the inverse of it.
SetBeam to set the beam keywords after prediction.
ScaleData to scale the data with a polynomial in frequency (based on SEFD of LOFAR
stations).
Upsample to upsample visibilities in time
Out to add intermediate output steps

Interpolate for improving the accuracy of data averaging.
User defined steps provide a plugin mechanism for arbitrary steps implemented in C++.
Python defined steps provide a plugin mechanism for arbitrary steps implemented in Python.

The input is one or more (regularly shaped) MeasurementSets (MSs). The data in the given column
are piped through the steps defined in the parset file and finally written (if needed). It makes it
possible to, say, flag at the full resolution, average, flag on a lower resolution, average further, and
finally write the data.
Regularly shaped means that all time slots in the MS must contain the same baselines and channels.
DPPP can handle only one spectral window. If the MS has multiple spectral windows, one has to be
selected.

If multiple MSs are given as input, their data are combined in frequency. It means that the time,
phase direction, etc. of the different MSs have to be the same. Note that other steps (like averaging)
can still be used.
When combining MSs (thus combining subbands), it is possible that one or more of them do not exist.
Flagged data will be inserted for them. The missing frequency info is deduced from the other
subbands. Note that in order to insert missing subbands in the data, the names of the missing MSs
have to be given at the right place in the list of MS names. Otherwise DPPP does not know that
subbands are missing.

The output can be a new MeasurementSet, but it is also possible to update the flags if the input is a
single MS. If averaging or phase-shifting to another phase center is done, the only option is to create
a new MeasurementSet.

At the end the run time is shown. Note that on a multi-core machine the user time can exceed the
elapsed time (user time is counted per core). By default the percentage of time each step took is also
shown.

The AOFlagger, MADFlagger, and Demixer, by far the most expensive parts of DPPP, can run multi-
threaded if DPPP is built with OpenMP. It is possible to define the number of threads to use by the
global key numthreads. Is that is not set, it uses the environment variable OMP_NUM_THREADS. If
also that variable is undefined, an DPPP run uses as many threads as there are CPU cores. Thus if
multiple DPPP runs are started on a machine, the default total number of threads will exceed the
number of CPU cores.

MeasurementSet Access

The 'msin' step defines which MS and which DATA column to use. It is possible to specify

2025-10-26 22:02 3/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

multiple MSs using a glob-pattern or a vector of MS names.
If multiple MSs are given, they will be concatenated in frequency. It means that all MSs must
have the same times, baselines, etc. Flagged data can be inserted for MSs that are specified,
but do not exist.
It is possible to select baselines and/or a band (spectral window) and/or skip leading or trailing
channels. This is the same for each input MS.
Optionally proper weights can be calculated using the auto-correlation data.
It sets flags for invalid data (NaN or infinite).
Dummy, fully flagged data with correct UVW coordinates will be inserted for missing time slots
in the MS. This can only be done if a single input MS is used.
Missing time slots at the beginning or end of the MS can be detected by giving the correct start
and end time. This is particularly useful for the imaging pipeline where BBS requires that the
MSs of all subbands of an observation have the same time slots. When updating an MS, those
inserted slots are temporary and not put back into the MS.
The 'msout' step step defines the output. If a band is selected, the output MS (including its
SPECTRAL_WINDOW subtable) contains that band only (its id is 0).
The input MS is updated if no output name is given or if the output name is equal to the input
name or equal to a dot.

The calculation of the weights is done as follows.

 Weight[ANT1_POL1, ANT2_POL2] = N / (autocorr[ANT1_POL1] *
autocorr[ANT2_POL2])
 N = EXPOSURE * CHAN_WIDTH * WGHT

where WGHT is the weight put in by RTCP (number of samples used / total number of samples).
This note discusses weighting in some more detail.

Flagging

It is important to realize that a MeasurementSet contains columns FLAG and FLAG_ROW to indicate if
data are flagged. If FLAG_ROW is set, all data in that row are flagged. DPPP will set FLAG_ROW if all
FLAG are set (and vice-versa).
When clearing the flags manually, it is important to realize that both columns have to be cleared. For
example:

 taql 'update my.ms set FLAG=F, FLAG_ROW=F'

DPPP flagging behaviour is as follows.

If one correlation is flagged, all correlations will be flagged (e.g. XX,YX,YY are flagged if XY is
flagged).
The msin step flags data containing NaNs or infinite numbers or if FLAG_ROW is set.
An AOFlagger step can be used to flag using Andre Offringa's rficonsole code. Because DPPP
always reads entire time slots, the flagging can be done on limited time windows only
(depending on the available memory). An overlap can be defined to reduce boundary effects.
By default QUALITY subtables will be created containing statistical flagging quality information.
They can be inspected using tools like aoqplot.
The default strategy works well for HBA data, but not for LBA data. The strategy LBAdefault
should be used for it.

https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=public:user_software:documentation:ndppp_weights.pdf

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

A Preflagger step can be used to flag (or unflag) on time, baseline, elevation, azimuth,
simple uv-distance, channel, frequency, amplitude, phase, real, and imaginary. Multiple values
(or ranges) can be given for one or more of those keywords. A keyword matches if the data
matches one of the values. The results of all given keywords are AND-ed. For example, only
data matching given channels and baselines are flagged.
Keywords can be grouped in a set making it a single (super) keyword. Such sets can be OR-ed
or AND-ed. It makes it possible to flag, for example, channel 1-4 for baseline A and channel
34-36 for baseline B. Here it is explained in a bit more detail.
A UVWFlagger step can be used to flag on UVW coordinates in meters and/or wavelengths. It is
possible to base the UVW coordinates on a given phase center. If no phase center is given, the
UVW coordinates in the input MS are used.
A MADFlagger step can be used to flag on the amplitudes of the data. It flags based on the
median of the absolute difference of the amplitudes and the median of the amplitudes. It uses a
running median with a box of the given size (number of channels and time slots). It is a rather
expensive flagging method with usually good results.
The flagging parameters can be given as an expression to make them dependent on baseline
length.
It is possible to specify which correlations to use in the MADFlagger. Flagging on XX only, can
save a factor 4 in performance.
Furthermore it is possible to only flag the auto-correlations and apply the results to the cross-
correlations with a baseline length within optionally given limits.

Averaging

Unflagged visibility data are averaged in frequency and/or time taking the weights into account.
New weights are calculated as the sum of the old weights.
Some older LOFAR MSs have weight 0 for unflagged data points. These weights are set to 1.
The UVW coordinates are also averaged (not recalculated).
It fills the new column LOFAR_FULL_RES_FLAG with the flags at the original resolution for the
channels selected from the input MS. It can be used by BBS to deal with bandwidth and time
smearing.
Averaging in frequency requires that the average factor fits integrally. E.g. one cannot average
every 5 channels when having 256 channels.
When averaging in time, dummy time slots will be inserted for the ones missing at the end. In
that way the output MeasurementSet is still regular in time.
An averaged point can be flagged if too few unflagged input points were available

Demixing

Demixing (or Smart Demixing explained below) is a faster and more flexible way of the old demixing
python script to demix and subtract strong sources (A-team). Jones matrices can be estimated for the
direction of the subtract-sources, model-sources, and the optional target-source.

It is possible to have different averaging for the demix and subtract step.
Selected (e.g. shorter) baselines can be demixed (others will be averaged only). By default only
the cross-correlations are used.
Four different direction types can be given:

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:tools:dppp:preflaggerandor

2025-10-26 22:02 5/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

The subtract-sources are subtracted from the data. They must have a source model.
The model-sources can be given to take the contribution of other strong sources into
account when solving for the gains. They must have a source model as well. The target
source should NOT be part of this list.
The other-sources directions are taken into account when demixing. They are projected
away when solving for the gains.
If the target source is given, it must have a source model and no other-sources can be
given. If no target source is given, the target direction can be projected away like the
extra-sources. Weak target sources should not be projected away.

A source model mentioned above is the patch name in the SourceDB (e.g. CasA). At the
moment only point and Gaussian sources are supported. The direction used for demixing is the
centroid of the sources that belong to the patch. The direction for an extra source (for which no
model is used) can be given as a parameter if that is needed.
It is important to note that the target source model must NOT be given using the subtract-
sources or model-sources. If it has to be used, give it using the targetsource parameter.
The Jones matrices will be estimated jointly for all directions, so better results are expected if
the sources are close to the target. However, joint estimation of the Jones matrices for all
directions is slower than estimating the Jones matrices for each direction separately. In the near
future an option will be added to estimate the Jones matrices for each direction separately like
the old demixing script is doing.

Smart Demixing

Smart Demixing does demixing as above, but in a smarter way using a scheme developed by Reinout
van Weeren. For each time chunk (say 2 minutes) it is decided how to demix.

It needs three source models, which are made from a text file using makesourcedb. Note that for
performance it is best to run makesourcedb with parameter outtype=blob.

A detailed model of the A-team sources used in the solve and subtract steps.
A coarse model of the A-team sources used in the estimate step. If not given, the detailed
model will be used.
A model of the target field. Usually the user can create it from the GSM using gsm.py.

Smart demixing works as follows:

If an A-team source is at about the same position as a source in the target model, the source is
removed from the A-team list and its detailed model replaces the source in the target model
used in the solve step (not for the estimate step).
Using the coarse A-team model, the visibilities are estimated per baseline for each A-team
source. By default the beam model is applied to get the apparent visibilities. The sources and
baselines are selected for which the maximum amplitude exceeds a given threshold. A
source/station will be solved for if the station appears in at least N of the selected baselines for
that source. A detailed source model is used in that step to get as accurate gains as possible.
The visibilities of the target are estimated in a similar way using the target model. The target is
included in the solve if its maximum amplitude exceeds a threshold or if the amplitude ratio
Target/Ateam exceeds a threshold. The target is also included if it is close to an A-team source
and the ratio exceeds another (smaller) threshold. Otherwise, the target is ignored (if close) or
deprojected.

A detailed decision tree that the smart demixing algorithm follows is available here.

https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:makesourcedb
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:gsm.py
https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=engineering:software:tools:demixchart.pdf

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

When solving for the complex gains of the selected A-team sources, the detailed A-team model is
used to get the correct gains. Note that by default the sources/stations not solved for are still used in
the solve step. There Jones matrices will have a small gain value on the diagonal and zeroes for the
off-diagonal values.

At the end a log is produced showing how the demixing behaved. It shows:

percentage of converged solves and the average number of iterations used for them.
percentage of times the target was included, deprojected, and ignored.
percentage of times a source/station was solved for (thus matched the threshold/ratio criteria).
average and standard deviation of percentage amplitude subtracted per source per baseline

Phase shifting

Data can be shifted to another phase center.
A shift step can shift back to the original phase center (by giving an empty center). If that is
done by the last shift step, no new MS needs to be created.

Upsample

Upsampling data can be useful for at least one use case. Consider data that has been
integrated for two seconds, by a correlator (the AARTFAAC correlator) that sometimes misses
one second of data. The times of the visibilities will then look like [0, 2, 4, 7, 9, 12], each having
integration time 2 seconds. DPPP will automatically fill missing time slots, which will lead to
times [0, 2, 4, 6, 7, 9, 11, 12]. This is still a nonuniform time coverage, which is not desirable.
Calling the upsample step with timestep=2 on this data will create times [0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13] (it will remove the inserted dummy time slots that overlap, i.e. at 7 and 12).
This data is then useful for further processing, e.g. averaging to 10 seconds.

Station summation

One or more new stations can be defined from a list of existing stations. An existing station can
occur in only one new station.
The data of baselines containing only one of the stations are added to form a new baseline.
Optionally the auto-correlations can be added to form a new auto-correlation 'baseline'.
The data can be added with or without weight.
Optionally averaging instead of summing can be done.

Data scaling

The data can be scaled with a polynomial in frequency to correct for the SEFD of the LOFAR
stations.
The default coefficients have been determined empirically. It is possible to specify them per
station.
It can take the number of used dipoles/tiles into account when scaling (e.g. for
remote/international or for failing ones).

2025-10-26 22:02 7/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Filtering

Similar to the msin step a filter makes it possible to keep only the given channels and/or
baselines.
By default, a station is always kept in the ANTENNA table, even if all its baselines are removed.
This can be changed with the key remove.

Flag statistics and plotting

Several steps show statistics about flagged data points.

A MADFlagger and AOFlagger step show the percentage of visibilities flagged by that flagging
step. It shows:

The percentages per baseline and per station.
The percentages per channel.
The number of flagged points per correlation, i.e. which correlation triggered the flagging.
This may help in determining which correlations to use in the MADFlagger.

A UVWFlagger and PreFlagger step show the percentage of visibilities flagged by that flagging
step. It shows percentages per baseline and per channel.
The msin step shows the number of visibilities flagged because they contain a NaN or infinite
value. It is shown which correlation triggered the flagging, so usually only the first correlation is
really counted.
A Counter step can be used to count and show the number of flagged visibilities. Such a step
can be inserted at any point to show the cumulative number of flagged visibilities. For example,
it can be defined as the first and last step to know how many visibilities have been flagged in
total by the various steps.
Each step giving flagging percentages can save the percentages per frequency and per station
to a table. The extension .flagfreq is used for the table containing the flags per frequency;
the extension .flagstat for the flags per station. The full basename of the table is the main
part of the MS followed by _<stepname> followed by the extension. The path for these tables
can be specified in the parset file.
The plotflags function in the Python module lofar.dppp can be used to plot those tables. It
can plot multiple subbands by giving it a list of table names. The flags per station will be
averaged for those subbands.

Intermediate output step

The step out can write data to disk at an intermediate stage. It takes the same arguments as the
'msout' step. As an example, the following reduction will flag, save flagged data at high resolution,
then average and save the result in another measurement set. On the averaged data, it will also
apply a calibration table and save that in the CORRECTED_DATA column.

msin=L123.MS

steps=[aoflag,out1,average,out2,applycal]

Write out flagged data at full resolution
out1.type=out

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

out1.name=L123-flagged.MS

average.timestep=4

Write out averaged data
out2.type=out
out2.name=L123-averaged.MS
out2.datacolumn=DATA

applycal.parmdb=instrument.parmdb

Write the corrected data to CORRECTED_DATA
msout=L123-averaged.MS
msout.datacolumn=CORRECTED_DATA

User defined step

Besides the predefined DPPP steps like AOFlagger, etc., it is possible to use any user-defined DPPP
step implemented in C++ or Python.

If implemented in C++ such a step has to reside in a shared library, that will dynamically be loaded
by DPPP. The name of such a shared library has to be the step type name. DPPP will try to load the
library libdppp_xxx.so (or .dylib on OS-X) for a step type xxx.

To make this a bit more flexible it is possible to define multiple steps in a single shared library. In such
a case the step type name has to consist of 2 parts separated by a dot. The first part is the library
name, the second part the step type in that library.

For example:

steps=[averager, mystep1, mystep2]
mystep1.type = mystep.stepa
mystep2.type = mystep.stepb

defines two user steps. Both step implementations reside in library libmystep.so.
A description and example of a dynamically loaded step can be found in the LOFAR source code
repository in LOFAR/CEP/DPPP/TestDyDPPP.

Python defined step

The mechanism described above is used to make it possible to implement a user step in Python. The
step type has to be pythoDPPP and the name of the Python module and class containing the code
have to be given. DPPP will load the library libdppp_pythonDPPP.so, which will start an embedded
Python shell, load the module, and instantiate an object of the class.
A detailed description is available.

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:tools:dppp:pythonstep

2025-10-26 22:02 9/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

ParSet File

Similar to most LOFAR programs, the parameters for the DPPP program are given in a so-called parset
file. Note that it is possible to add parameters or overwrite parameters, defined in the parset file,
using command line arguments. For example:

DPPP DPPP.pset parm1=value1 parm2=value2 ...

The steps to perform have to be defined in the parset file. They are executed in the given order,
where the data are piped from one step to the other until all data are processed. Each step has a
name to be used thereafter as a prefix in the keyword names specifying the type and parameters of
the step.

The most basic parset is as follows. It copies the DATA column of the MS and flags NaN and infinite
data.

msin = ~/SB0.MS
msout = SB0_DPPP.MS
steps=[]

The following example is more elaborate. It flags (using a median flagger), averages all channels,
flags the result of the average, and finally averages in time.
Note that 'msin' and 'msout' can be seen as an implicit first and last step.

msin = ~/SB0.MS
msin.startchan = 8
msin.nchan = 240
msin.datacolumn = DATA # is the default

msout = "SB0_DPPP.MS" # if empty, the input MS is updated and
 # no averaging steps can be done
msout.datacolumn = DATA # is the default

steps = [flag1,count,avg1,flag2,avg2,count]
flag1.type=madflagger
flag1.threshold=1
flag1.freqwindow=31
flag1.timewindow=5
flag1.correlations=[0,3] # only flag on XX and YY
flag1.count.save = true # save flag percentages
flag1.count.path = $HOME # to a table in $HOME

avg1.type = average
avg1.freqstep = 240
avg1.timestep = 1 # is the default

flag2.type=madflagger
flag2.threshold=2
flag2.timewindow=51

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

avg2.type = average
avg2.timestep = 5

Plotting the flag percentages, saved by the first MADFlagger step, could be done in python like:

import lofar.dppp as ld
ld.plotflags ('$HOME/SB0_flag1.flagfreq') # step name was flag1

Description of all parameters

The parameters in the parset are divided into several groups like input (msin), output (msout),
madflagger, average, preflagger, and uvwflagger. Because multiple flagging and averaging steps can
be specified, their parameters have to be prefixed with the step name as shown in the example
above.

Parameter type default description
General

steps string
vector

Names of the steps to perform. Each step has to
be defined using the step name as a prefix.
The step type parameter defines the type of step
(averager, madflagger, preflagger, uvwflagger,
counter). The step type defaults to the name of the
step, which is especially handy for count steps.
msin and msout are implicit steps which should
not be given here.
An empty vector [] means that the input MS is
copied to the output MS while flagging NaN and
infinite numbers.
Note that a step name can be used more than
once meaning that the same step will be executed
multiple times (e.g., multiple times count).

numthreads int ${OMP_NUM_THREADS} Maximum number of threads to use.
showprogress bool true Show a progress bar?
showcounts bool true Show flagging statistics?

showtimings bool true
At the end the percentage of elapsed time each
step took can be shown; the overall time is always
shown.

checkparset integer 0

What to do if parameters in the ParSet file are not
used.
-1 means ignore.
0 means give a warning showing those
parameters. In this way misspelled parameters can
be detected.
1 means give an error and stop.
For backward compatibility False (0) and True (1)
can also be given.

uselogger bool false If false, all DPPP messages are written on stdout. If
true, the logging framework is used.

2025-10-26 22:02 11/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Counter

<step>.type string
Case-insensitive step type; must be 'counter' (or 'count').
Note that the type defaults to the step name, so if step name
count is used, nothing more needs to be specified.

<step>.showfullyflagged bool false
If true, all fully flagged baselines are shown in the baseline
selection format using their antenna indices (not names). For
example: 0&1; 3&7

<step>.save bool false

If true, the flag percentages per frequency are saved to a table
with extension .flagfreq and percentages per station to a
table with extension .flagstat. The basename of the table is
the MS name (without extension) followed by the stepname
and extension.

<step>.path string “” The directory where to create the flag percentages table. If
empty, the path of the input MS is used.

<step>.warnperc double 0
If > 0, print an extra message for each baseline or channel
with a percentage flagged higher than this value. Such a
message line can be easily grep-ed.

<step>.flagdata bool false
If COUNT is the only step in an DPPP run, the data won't be
read, so unflagged invalid data (NaN. infinite) won't be noticed
and counted as flagged. Setting this flag forces DPPP to read
and check the data.

Input

msin
msin.name string

Name of the input MeasurementSets. If a single
name is given, it can be a glob-pattern (like
L23456_SAP000_SB*) meaning that all MSs
matching the pattern will be used. A glob-pattern
can contain *, ?, [], and {} pattern characters (as
used in bash).
If multiple MSs are to be used, their data are
concatenated in frequency, thus multiple
subbands are combined to a single band. In
principle all MSs should exist, but if
'missingdata=true' and 'orderms=false' flagged
zero data will be inserted for missing MS(s) and
their frequency info will be deduced from the
other MSs.

msin.sort bool false Does the MS need to be sorted in TIME order?

msin.orderms bool true
Do the MSs need to be ordered on frequency? If
true, all MSs must exist, otherwise they cannot be
ordered. If false, the MSs must be given in order
of frequency.

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

msin.missingdata bool false

true = it is allowed that a data column in an MS
does not exist. In that case its data will be 0 and
flagged. It can be useful if the CORRECTED_DATA
of subbands are combined, but a BBS run for one
of them failed.
If 'orderms=false', it also makes it possible that a
MS is specified but does not exist. In such a case
flagged data will be used instead. The missing
frequency info will be deduced from the other
MSs where all MSs have to have the same
number of channels and must be defined in order
of frequency.

msin.baseline string
Baselines to be selected (default is all baselines).
See Description of baseline selection parameters.
Only the CASA baseline selection syntax as
described in this note can be used.

msin.band integer -1 Band (spectral window) to select (<0 is no
selection). This is mainly useful for WSRT data.

msin.startchan integer 0

First channel to use from the input MS (channel
numbers start counting at 0). Note that skipped
channels will not be written into the output MS. It
can be an expression with `nchan` (nr of input
channels) as parameter. E.g.
nchan/32
will be fine for LOFAR observations with 64 and
256 channels.

msin.nchan integer 0
Number of channels to use from the input MS (0
means till the end). It can be an expression with
`nchan` (nr of input channels) as parameter. E.g.
15*nchan/16

msin.starttime string first time in MS
Center of first time slot to use; if < first time in
MS, dummy time slots are inserted. A date/time
must be specified in the casacore MVTime format,
e.g. 19Feb2010/14:01:23.817

msin.starttimeslot int 0 Starting time slot. This can be negative to insert
flagged time slots before the beginning of the MS.

msin.endtime string last time in MS Center of last time slot to use; if > last time in
MS, dummy time slots are inserted.

msin.ntimes integer 0 Number of time slots to use (0 means till the
end).

msin.useflag bool true
Use the current flags in the MS? If false, all flags
in the MS are ignore and the data (except NaN
and infinite values) are assumed to be good and
will be used in later steps.

msin.datacolumn string DATA Data column to use, i.e. the name of the column
in which the visibilities are written.

msin.weightcolumn string WEIGHT_SPECTRUM
or WEIGHT

Weight column to use. Defaults to
WEIGHT_SPECTRUM if this exists, otherwise the
WEIGHT column is used.

msin.modelcolumn string MODEL_DATA Model data column. Currently only used in gaincal
and ddecal.

https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=public:user_software:documentation:msselection.pdf

2025-10-26 22:02 13/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

msin.autoweight bool false
Calculate weights using the auto-correlation
data? It is meant for setting the proper weights
for a raw LOFAR MeasurementSet.

msin.forceautoweight bool false

In principle the calculation of the weights should
only be done for the raw LOFAR data. It appeared
that sometimes the autoweight switch was
accidently set in a DPPP run on already dppp-ed
data. To make it harder to make such mistakes,
the forceautoweight flag has to be set as well
for MSs containing dppp-ed data.

Output

msout
msout.name string

Name of new output
MeasurementSet; if empty, the
input MS is updated. The other
msout parameters are not
applicable (apart from
countflag).
Normally an update is only done
if a step is given that can change
the data (e.g. PreFlagger).
However, a name '.' or a name
equal to the name of the input
MS means that the input MS will
always be updated, even if no
step is given. This is useful if only
flagging of NaN-s in the MS
needs to be done.
Note that when doing averaging,
the input MS cannot be updated.

msout.overwrite bool false When creating a new MS,
overwrite if already existing?

msout.datacolumn string DATA

The column in which to write the
data. When creating a new
MeasurementSet, only column
DATA can be used. When
updating the input
MeasurementSet, any column
can be used. If not existing, it will
be created first.

msout.weightcolumn string WEIGHT_SPECTRUM

The column in which to write the
weights. When creating a new
MeasurementSet, only
WEIGHT_SPECTRUM can be used.
When updating the input
Measurementset, any column
can be used. If not existing, it will
be created first.

msout.writefullresflag bool true Write the full resolution flags?

msout.tilesize integer 1024
For expert user: tile size (in
Kbytes) for the data columns in
the output MS.

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

msout.tilenchan integer 8
For expert user: maximum
number of channels per tile in
output MS.

msout.clusterdesc string “” If not empty, create the VDS file
using this ClusterDesc file.

msout.vdsdir string “”
Directory where to put the VDS
file; if empty, the MS directory is
used.

msout.storagemanager
msout.storagemanager.name string “”

What storage manager to use.
When empty (default), the data
will be stored uncompressed.
When set to “dysco”, the data
will be compressed. Settings
below will set the compression
settings; see the Dysco wiki and
the paper for more info. The
default settings are reasonably
conservative and safe.

msout.storagemanager.databitrate integer 10
Number of bits per float used for
columns containing visibilities.
Can be set to zero to compress
weights only.

msout.storagemanager.weightbitrate integer 12

Number of bits per float used for
WEIGHT_SPECTRUM column. Can
be set to zero to compress data
only. Note that compressing
weights will set all polarizations
to the same weight (determined
by the minimum weight over the
polarizations).

msout.storagemanager.distribution string “TruncatedGaussian”
Assumed distribution for
compression; “Uniform”,
“TruncatedGaussian”,
“Gaussian” or “StudentsT”.

msout.storagemanager.disttruncation double 2.5
Truncation level for compression
with the Truncated Gaussian
distribution.

msout.storagemanager.normalization string “AF” Compression normalization
method: AF, RF or Row.

Filter

<step>.type string Case-insensitive step type; must be 'filter'

<step>.startchan integer 0

First channel to use from the input MS (channel numbers start
counting at 0). Note that skipped channels will not be written into
the output MS. It can be an expression with `nchan` (nr of input
channels) as parameter. E.g.
nchan/32
will be fine for LOFAR observations with 64 and 256 channels.

https://github.com/aroffringa/dysco/wiki
https://arxiv.org/abs/1609.02019

2025-10-26 22:02 15/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

<step>.nchan integer 0
Number of channels to use from the input MS (0 means till the end).
It can be an expression with `nchan` (nr of input channels) as
parameter. E.g.
15*nchan/16

<step>.baseline string “” Baselines to keep. See Description of baseline selection
parameters.

<step>.blrange double
vector “” Baselines to keep. See Description of baseline selection

parameters.
<step>.corrtype string “” Correlation type to match? Must be auto, cross, or an empty string.

<step>.remove bool false

If true, the stations not used in any baseline will be removed from
the ANTENNA subtable and the antenna ids in the main table will be
renumbered accordingly. To have a consistent output
MeasurementSet, other subtables (FEED, POINTING, SYSCAL,
LOFAR_ANTENNA_FIELD, LOFAR_ELEMENT_FAILURE, and
QUALITY_BASELINE_STATISTIC) will also be updated.
Note that stations filtered previously (e.g. using msselect) will also
be removed, even if no baseline selection is done in the filter step.

Upsample

<step>.type string Case-insensitive step type; must be 'upsample'
<step>.timestep integer Number of times into which each timestep will be expanded

AOFlagger

<step>.type string Case-insensitive step type; must be 'aoflagger' (or 'aoflag').

<step>.count.save bool false

If true, the flag percentages per frequency are saved to a table
with extension .flagfreq and percentages per station to a
table with extension .flagstat. The basename of the table is
the MS name (without extension) followed by the stepname and
extension.

<step>.count.path string “” The directory where to create the flag percentages table. If
empty, the path of the input MS is used.

<step>.strategy string “”

The name of the strategy file to use. If no name is given, the
default strategy is used which is fine for HBA. For LBA data the
strategy LBAdefault should be used.
A strategy file is looked up as given. If not found, it is looked up
in $LOFARROOT/share/rfistrategies that contains the standard
strategies.

<step>.memoryperc integer 0

If >0, percentage of the machine's memory to use. If
memorymax nor memoryperc is given, all memory will be used
(minus 2 GB (at most 50%) for other purposes). Accepts only
integer values (LOFAR v2.16). Limiting the available memory too
much affects flagging accuracy; in general try to use at least 10
GB of memory.

<step>.memorymax double 0 Maximum amount of memory (in GB) to use. ⇐0 means no
maximum. As stated above, this affects flagging accuracy.

<step>.timewindow integer 0

Number of time slots to be flagged jointly. The larger the time
window, the better the flagging performs. 0 means that it will be
deduced from the memory to use. Note that the time window
can be extended with an overlap on the left and right side to
minimize possible boundary effects.

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

<step>.overlapperc double 0 or
1

If >0, percentage of time window to be added to the left and
right side for overlap purposes (to minimize boundary effects). If
overlapmax is not given, it defaults to 1%.

<step>.overlapmax integer 0 Maximum overlap value (0 is no maximum).
<step>.autocorr bool true Flag autocorrelations?
<step>.pulsar bool false Use flagging strategy optimized for pulsar observations?
<step>.pedantic bool false Be more pedantic when flagging?
<step>.keepstatistics bool true Write the quality statistics?

MADFlagger

<step>.type string Case-insensitive step type; must be 'madflagger' (or 'madflag').

<step>.count.save bool false

If true, the flag percentages per frequency are saved to a table
with extension .flagfreq and percentages per station to a
table with extension .flagstat. The basename of the table is
the MS name (without extension) followed by the stepname
and extension.

<step>.count.path string “” The directory where to create the flag percentages table. If
empty, the path of the input MS is used.

<step>.threshold float 1

The flagging threshold that can be baseline dependent.
It can be any (TaQL-like) expression that evaluates to a float. In
the expression the variable 'bl' can be used which is the
baseline length (in meters). In this way the value can be made
baseline dependent. For example:
iif(bl<100, 0.5, iif(bl<500, 0.75, iif(bl<1000,
0.9, 1)))
defines the threshold between the baseline lengths 100, 500,
and 1000 meter.

<step>.timewindow integer 1

Number of times in the median box. If not odd, 1 is subtracted.
It is silently reduced if exceeding the actual number of time
slots.
In a way similar to 'threshold' it can be made baseline length
dependent.

<step>.freqwindow integer 1

Number of channels in the median box. If not odd, 1 is
subtracted. It is silently reduced if exceeding the actual
number of channels.
In a way similar to 'threshold' it can be made baseline length
dependent.

<step>.correlations integer
vector []

The correlations to use in the flagger; an empty vector means
all. They are handled in the order given; if the flagging
criterium holds for one correlation, the other correlations are
not tested anymore. So if one knows that most RFI is found in
YY, then in XX and finally some in XY and YX, the vector should
be [3,0,1,2] because it makes the program run faster. Note
that the statistics printed at the end show how many flagged
data points have been found per correlation.

http://www.astron.nl/casacore/trunk/casacore/doc/notes/199.html

2025-10-26 22:02 17/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

<step>.applyautocorr bool False

True means that the MADFlagger is used on the auto-
correlations only. The resulting flags are applied to the cross-
correlations, thus data are flagged where the corresponding
auto-correlations are flagged.
An error is given if set to True, while the MS does not contain
auto-correlations.

<step>.blmin integer -1
Minimum baseline length (in meters).
Only baselines with a length >= this minimum are flagged. If
applyautocorr=true, the autocorrelations are applied to the
matching baselines only.

<step>.blmax integer 1e30 Maximum baseline length (in meters). It is similar to minimum.

PhaseShift

<step>.type string Case-insensitive step type; must be 'phaseshifter' (or 'phaseshift').

<step>.phasecenter string
vector

The RA and DEC (in J2000) of the new phase center. If an empty
vector (i.e. []) is given, the original phase center is used. The RA and
DEC can be given in sexagesimal format or as a value followed by a
unit (default rad). For example, [12h31m34.5, 52d14m07.34] or
[187.5deg, 52.45deg]

Demixer

<step>.type string Case-insensitive step type; must be
'demixer' (or 'demix').

<step>.baseline string “” Baselines to demix. See Description of
baseline selection parameters.

<step>.blrange double
vector [] Baselines to demix. See Description of

baseline selection parameters.

<step>.corrtype string cross
Baselines to demix. Correlation type to
match? Must be auto, cross, or an empty
string.

<step>.timestep integer 1
Number of time slots to average when
subtracting. It is truncated if exceeding the
actual number of times. Note that the data
itself will also be averaged by this amount.

<step>.freqstep integer 1

Number of channels to average when
subtracting. It is truncated if exceeding the
actual number of channels. Note that the
data itself will also be averaged by this
amount.

<step>.demixtimestep integer timestep
Number of time slots to average when
demixing. It is truncated if exceeding the
actual number of times. It defaults to the
averaging used for the subtract.

<step>.demixfreqstep integer freqstep
Number of channels to average when
demixing. It is truncated if exceeding the
actual number of channels. It defaults to the
averaging used for the subtract.

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

<step>.ntimechunk integer #cores

Number of demix time slots (after
averaging) that are processed jointly in as
much a parallel way as possible. If subtract
uses different time averaging, it has to fit
integrally.

<step>.skymodel string sky The name of the SourceDB to use (i.e., the
output of makesourcedb).

<step>.instrumentmodel string instrument
The name of the ParmDB to use. The
ParmDB does not need to exist. If it does not
exist it will be created.

<step>.subtractsources string
vector

Names of the sources to subtract. If none
are given, demixing comes down to
averaging. The sources must exist as
patches in the SourceDB.

<step>.modelsources string
vector []

Names of sources with models to take into
account when solving. the sources must
exist as patches in the SourceDB. Note that
the target should NOT be part of this
parameter. If a model of the target has to be
used, it has to be given in parameter
targetsource.

<step>.targetsource string “”

It can be used to specify the name of the
source model of the target. If given, the
target source model (its patch in the
SourceDB) is taken into account when
solving; in this case parameter
othersources cannot be given. It cannot
be given if ignoretarget=true. If not
given, the target is projected away or
ignored (depending on parameter
ignoretarget).

<step>.ignoretarget bool false false = project the target source away; true
= ignore the target

<step>.othersources string
vector []

Names of sources of which the direction is
taken into account when demixing by
projecting the directions away. The direction
needs to be specified if the source is
unknown (which is usually the case). It can
be done using parameters
<step>.<sourcename>.phasecenter.

<step>.<sourcename>.phasecenter string
vector

Taken
from
SourceDB

The J2000 direction [ra,dec] of a source
given above.

<step>.propagatesolutions bool true

If set to true, solutions of a time slot are
used as initial values for the next time slot.
If set to false, the diagonal elements of the
Jones matrix are initialized to one and the
off-diagonal elements to zero.

<step>.defaultgain double 1.0
The default and initial gain for the
directional gains that are computed
internally.

2025-10-26 22:02 19/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

<step>.maxiter int 50 Maximum number of iterations used in the
LM solve

SmartDemixer

<step>.type string Case-insensitive step type; must be
'smartdemixer' (or 'smartdemix').

<step>.baseline string “” Baselines to demix. See Description of baseline
selection parameters.

<step>.blrange double
vector “” Baselines to demix. See Description of baseline

selection parameters.

<step>.corrtype string cross Baselines to demix. Correlation type to match?
Must be auto, cross, or an empty string.

<step>.target.baseline string “CS*&”
Baselines to use in prediction of median target
amplitude. See Description of baseline selection
parameters.

<step>.target.blrange double
vector “”

Baselines to use in prediction of median target
amplitude. See Description of baseline selection
parameters.

<step>.target.corrtype string cross
Baselines to use in prediction of median target
amplitude. Correlation type to match? Must be
auto, cross, or an empty string.

<step>.timestep integer 1
Number of time slots to average when
subtracting. It is truncated if exceeding the
actual number of times. Note that the data itself
will also be averaged by this amount.

<step>.freqstep integer 1
Number of channels to average when
subtracting. It is truncated if exceeding the
actual number of channels. Note that the data
itself will also be averaged by this amount.

<step>.demixtimestep integer timestep
Number of time slots to average when demixing.
It is truncated if exceeding the actual number of
times. It defaults to the averaging used for the
subtract.

<step>.demixfreqstep integer freqstep
Number of channels to average when demixing.
It is truncated if exceeding the actual number of
channels. It defaults to the averaging used for
the subtract.

<step>.chunksize integer demixtimestep
Number of time slots in a chunk for which it is
decided how to demix (which sources/stations to
use and how to deal with the target). It has to be
a multiple of parameter 'demixtimestep'.

<step>.ntimechunk integer #cores

Number of time chunks that are processed
jointly in as much a parallel way as possible.
Preferably it is a multiple of the number of cores.
Note that for a typical LOFAR observation the
data of a single time slot is about 4 MB. A typical
chunk size can be 2 minutes, thus 120 time slots
per core. For 24 cores this amounts to about 11
GB!!

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

<step>.ateam.skymodel string
The detailed sky model of the A-team sources
used to solve for the complex gains. It is the
name of the SourceDB to use (i.e., the output of
makesourcedb).

<step>.estimate.skymodel string “”

The coarse sky model of the A-team sources
used to estimate the visibilities when deciding
how to demix a chunk. It is the name of the
SourceDB to use (i.e., the output of
makesourcedb outtype=blob).
If no name is given, the detailed A-team model
will be used.
The SourceDB must contain the same sources as
the detailed model at about the same position.
The order can be different though.

<step>.target.skymodel string
The sky model of the target. It is the name of
the SourceDB to use (i.e., the output of
makesourcedb).

<step>.target.delta double 60
Angular distance uncertainty (in arcsec) to
determine if an A-team source is at the same
position as a target source.

<step>.instrumentmodel string instrument

The name of the ParmDB to use. The ParmDB
does not need to exist. If it does not exist it will
be created.
Note that the ParmDB is created after the output
MS is created, so it can be a subdirectory of the
output MS.

<step>.sources string
vector “”

Names of the A-team sources to use. If none are
given, all sources in the A-team sky model will
be used.

<step>.ateam.threshold double 50 for LBA
5 for HBA

Take a source/baseline into account if its
maximum estimated amplitude > threshold.

<step>.minnbaseline integer 6
Solve a source/station if the station occurs in at
least 'minnbaseline' baselines with amplitude >
ateam.threshold.

<step>.minnstation integer 5 Solve a source if at least 'minnstation' stations
are solvable for the source.

<step>.target.threshold double 200 for LBA
100 for HBA

Include the target in the solve if its maximum
estimated amplitude > threshold.

<step>.ratio1 double 5 Include the target in the solve if the estimated
amplitude ratio Target/max(Ateam) > ratio1.

<step>.distance.threshold double 60

Distance threshold (in degrees). The target is
close to the A-team if the angular distance
(scaled with freq) < threshold for any A-team
source (thus angdist*obsfreq/reffreq <
threshold).

<step>.distance.reffreq double 60e6 The 'reffreq' frequency used above.

<step>.ratio2 double 0.25
Include the target in the solve if the target is
close to the A-team and the estimated
amplitude ratio Target/min(Ateam) > ratio2.

<step>.maxiter integer 50 Maximum number of iterations to use in the
solve.

2025-10-26 22:02 21/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

<step>.propagatesolutions bool true

If set to true, solutions of a time slot are used as
initial values for the next time slot. If set to
false, the diagonal elements of the Jones matrix
are initialized to one and the off-diagonal
elements to zero. However, solutions will not be
transferred between chunks processed in
parallel.

<step>.defaultgain double 1e-3

The default gain to use for the real part of the
diagonal Jones elements for the unsolvable
sources/stations. Take into account that the
scale of the raw visibilities changed when
COBALT was adopted. In the case of data
correlated with BG/P, this parameter should be
tuned down (1e-8).

<step>.verbose int 0

0 = only show basic demix statistics
1 = show for each time chunk how target is
handled, which sources are solvable, and how
many stations.
>10 = various levels of debugging output.

<step>.solveboth bool false
Mainly for test purposes. True means that in the
solve only the baselines are used for which both
stations are solvable. Usually this gives worse
results.

<step>.targethandling integer 0
Mainly for test purposes. It enforces the target
handling. 1=include, 2=deproject, 3=ignore,
else=use smart way.

<step>.applybeam bool true Mainly for test purposes. Apply the station beam
in the estimate, solve, and subtract steps?

<step>.subtract bool true
Mainly for test purposes. False means that the
subtract step is not done, thus only a solve of
the gains is done.

Averager

<step>.type string Case-insensitive step type; must be 'averager' (or equivalent
'average' or 'squash').

<step>.timestep integer 1 Number of time slots to average. It is truncated if exceeding the
actual number of times.

<step>.freqstep integer 1 Number of channels to average. It is truncated if exceeding the
actual number of channels.

<step>.minpoints integer 0 If number of averaged unflagged input points < minpoints, the
averaged point is flagged.

<step>.minperc float 0 Like minpoints, but expressed as a percentage of timestep*freqstep.

<step>.timeresolution float 0 Target time resolution, in seconds. If this is given, and bigger than
zero, it overrides <step>.timestep

<step>.freqresolution float 0
Target frequency resolution, in Hz (or append “MHz” or “kHz” to
specify it in those units). If this is given, and bigger than zero, it
overrides <step>.freqstep

StationAdder

<step>.type string Case-insensitive step type; must be 'stationadder' (or equivalent
'stationadd').

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

<step>.stations record

One or more names of new stations each followed by the list of
stations it consists of. A station name in the list can be a glob-like
pattern. Optionally such a pattern can be negated by a ! or ^
meaning that names matching that pattern are excluded from the
selection so far. For example:
stations={ST6:'CS00[2-7]*'} can be used to form the
superstation from all superterp stations.
{ST6:['CS00[2-7]*','!CS005*']} is similar, but excludes
CS005.
{ST001:[CS001,CS002,CS003],
ST002:[CS004,CS005,CS006]}
defines 2 new stations ST001 and ST002 consisting of the stations in
the lists following their names.

<step>.minpoints int 1 Flag a new data point if number of unflagged data points added is
less than minpoints.

<step>.useweights bool true Use the input data weights? False means all input visibilities have
weight 1.

<step>.average bool true Is a visibility of a new station the weighted average of its input
visibilities and its UVW the weighted average of the input UVWs?

<step>.autocorr bool false Form new auto-correlations?
<step>.sumauto bool true Sum auto- or cross-correlations to form new auto-correlations?

ScaleData

<step>.type string Case-insensitive step type; must be 'scaledata'.

<step>.stations string
vector []

Zero or more glob-like patterns defining the stations for which the
corresponding coefficient vector has to be used. The coefficients of the
first matching pattern are used. Default coefficients (determined by
Adam Deller for LBA and HBA) are used for stations not given. For
example:
stations=[CS*, RS*, *]

<step>.coeffs double
vector []

Zero or more vectors of coefficients defining a polynomial in frequency
(MHz). For example:
coeffs=[[1.5, 0.7, 0.04], [1.7, 0.65], [1.2, 0.8]]
The first vector results in a scale factor of 1.5 + 0.7*f + 0.04*f*f
where f is the channel frequency in MHz.
Note that an extra scaling can be applied taking into account the
number of used dipoles/tiles of a station (see next parameter).

<step>.scalesize bool

This parameter determines if an extra scaling has to be applied to
correct for the number of tiles/dipoles actually used in a station. By
default this will be done for the stations using the default coefficients,
because those coefficients have been determined for an LBA station
with 48 dipoles and HBA station with 24 tiles. By default it will not be
done for explicitly given coefficients, because it is supposed they are
determined specifically for that station.
Note that giving stations=* coeffs=1 scalesize=true will
correct for station size only.

PreFlagger

<step>.type string Case-insensitive step type; must be 'preflagger' (or 'preflag').

2025-10-26 22:02 23/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

<step>.count.save bool false

If true, the flag percentages per frequency are saved to a
table with extension .flagfreq and percentages per station
to a table with extension .flagstat. The basename of the
table is the MS name (without extension) followed by the
stepname and extension.

<step>.count.path string “” The directory where to create the flag percentages table. If
empty, the path of the input MS is used.

<step>.mode string set

Case-insensitive string telling what to do with the flags of the
data matching (or not matching) the selection criteria given in
the other parameters.
'set' means set the flags for the matching data. This is the
default mode.
'clear' means clear the flags for the matching data. However,
flags of invalid data (NaN or zero) are always set.
'setcomplement' or 'setother' means set flags for NON-
matching data.
'clearcomplement' or 'clearother' means clear flags for NON-
matching (valid) data.

.expr string []

Expression of preflagger keyword sets (see above). Operators
AND, OR, and NOT are possible (or their equivalents &&,&, ||,
|, and !). Parentheses can be used to change precedence
order. For example: c1 and (c2 or c3)
Take care that the name of the set is used as an extra prefix
in the PreFlagger parameter names.

.timeofday time vector []
Ranges of UTC time-of-day given as st..end or val+-delta.
Each value must be given as 12:34:56.789, 12h34m56.789, or
as a value followed by a unit like h, min, or s.

.abstime date/time
vector []

Ranges of absolute UTC date/time given as st..end or val+-
delta. Each value (except delta) must be given as a date/time
in casacore MVTime format, for instance 12-
Mar-2010/11:31:00.000. A delta value must be given as a time
(for instance 1:30:0 or 20s).

.reltime time vector [] Ranges of times (using .. or +-) since the start of the
observation. A time can be given like 1:30:0 or 20s.

.timeslot integer
vector [] Time slot sequence numbers. First time slot is 0. st..end

means end inclusive.

.lst time vector []
Ranges of Local Apparent Sidereal Times like 1:30:0 +-
20min. The LST of a time slot is calculated for the array
position, thus not per antenna.

.azimuth direction
vector []

Ranges of azimuth angles given as st..end or val+-delta. Each
value has to be given as a casacore direction like
12:34:56.789 or 12h34m56.789, 12.34.56.789 or
12d34m56.789, or a value followed by a unit like rad or deg.

.elevation direction
vector [] Ranges of elevation angles (similar to azimuth). For example:

0deg..10deg

.baseline baseline
vector “” See Description of baseline selection parameters.

.corrtype string “” Correlation type to match? Must be auto, cross, or an empty
string.

.blmin double -1 If blmin > 0, baselines with length < blmin meter will match.

.blmax double -1 If blmax > 0, baselines with length > blmax meter will match.

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

.uvmmin double -1
If uvmmin > 0, baselines with UV-distance < uvmmin meter
will match. Note that the UV-distance is the projected baseline
length.

.uvmmax double -1 If uvmmax > 0, baselines with UV-distance > uvmmax meter
will match.

.freqrange string
vector []

Channels in the given frequency ranges will match. Each
value in the vector is a range which can be given as start..end
or start+-delta. A value can be followed by a unit like KHz. If
only one value in a range has a unit, the unit is also applied to
the other value. If a range has no unit, it defaults to MHz. For
example: freqrange=[1.2 .. 1.4 MHz,
1.8MHz+-50KHz] flags channels between 1.2MHz and
1.4MHz and between 1.75MHz and 1.85MHz. The example
shows that blanks can be used at will.

.chan string
vector []

The given channels will match (start counting at 0). Channels
exceeding the number of channels are ignored. Similar to
msin, it is possible to specify the channels as an expression of
nchan. Furthermore, .. can be used to specify ranges. For
example: chan=[0..nchan/32-1,
31*nchan/32..nchan-1] to flag the first and last 2 or 8
channels (depending on 64 or 256 channels in the
observation).

.amplmin float vector -1e30

Correlation data with amplitude < amplmin will match. It can
be given per correlation. For example,
amplmin=[100,,,100] matches data points with XX or YY
amplitude < 100. The non-specified amplitudes get the
default value.
It is also possible to give a single value (without brackets)
meaning that it is used as the minimum for all correlations.

.amplmax float vector 1e30 Correlation data with amplitude > amplmax will match.

.phasemin float vector -1e30 Correlation data with phase < phasemin (in radians) will
match.

.phasemax float vector 1e30 Correlation data with phase > phasemax (in radians) will
match.

.realmin float vector -1e30 Correlation data with real complex part < realmin will match.

.realmax float vector 1e30 Correlation data with real complex part > realmax will match.

.imagmin float vector -1e30 Correlation data with imaginary complex part < imagmin will
match.

.imagmax float vector 1e30 Correlation data with imaginary complex part > imagmax will
match.

ApplyCal

<step>.type string Case-insensitive step type; must be 'applycal' (or
'correct').

<step>.parmdb string
Path of parmdb in which the parameters are
stored. This can also be an H5Parm file, in that
case the filename has to end in '.h5'

2025-10-26 22:02 25/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

<step>.solset string “”

In case of applying an H5Parm file: the name of
the solset to be used. If empty, defaults to the
name of one solset present in the H5Parm (if
more solsets are present in an H5Parm and solset
is left empty, an error will be thrown))

<step>.correction string gain

Type of correction to perform, can be one of
'gain', 'tec', 'clock', '(common)rotationangle' /
'rotation', '(common)scalarphase',
'(common)scalaramplitude' or 'rotationmeasure'
(create multiple ApplyCal steps for multiple
corrections). When using H5Parm, this is for now
the name of the soltab; the type will be deduced
from the metadata in that soltab, except for full
Jones, in which case correction should be
'fulljones'.

<step>.soltab string
vector

from
correction

The name or names of the H5 soltab. Currently
only used when correction=fulljones, in which
case soltab should list two names (amplitude and
phase soltab).

<step>.direction string “” If using H5Parm, the direction of the solution to
use

<step>.updateweights bool false
Update the weights column, in a way consistent
with the weights being inverse proportional to
the autocorrelations (e.g. if 'autoweights' was
used before).

<step>.interpolation string nearest
If using H5Parm, the type of interpolation (in time
and frequency) to use, can be one of 'nearest' or
'linear'.

<step>.invert bool true
Invert the corrections, to correct the data.
Default is true. If you want to corrupt the data,
set it to 'false'

<step>.timeslotsperparmupdate int 100
Number of time slots to handle after one read of
the parameter file. Optimization to prevent
spurious reading from the parmdb.

<step>.steps list []

(new in version 3.1) ApplyCal substeps, e.g.
[myApplyCal1, myApplyCal2]. Their parameters
can be specified through e.g.
<step>.myApplyCal1.correction=tec. If a
parameter is not given for the substep, it takes
the value from <step>..

GainCal

<step>.type string Case-insensitive step type; must be 'gaincal' or
'calibrate'.

<step>.caltype string
The type of calibration that needs to be performed,
can be one of 'fulljones', 'diagonal', 'phaseonly',
'scalarphase'. Experimental values are 'amplitude' or
'scalaramplitude', 'tec', 'tecandphase'

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

<step>.parmdb string

Path of parmdb in which the computed parameters
are to be stored. If the parmdb already exists, it will
be overwritten. Note: You cannot use this parmdb in
an applycal step in the same run of DPPP. To apply
the solutions of the gaincal directly, use
'gaincal.applysolution' (see below). New in LOFAR
3.1: if the parmdb name ends in .h5 , an H5Parm
will be written.

<step>.blrange vector
Vector of baseline lengths to use for calibration. See
Description of baseline selection parameters. New in
version 2.20

<step>.uvlambdamin double 0

Ignore baselines / channels with UV < uvlambdamin
wavelengths. Note: also all other variants of uv
flagging described in UVWFlagger (uvmmin,
uvmrange, uvlambdarange, etc) are supported (New
in 3.1)

<step>.baseline string
Baseline selection filter for calibration. See
Description of baseline selection parameters. New in
version 2.20

<step>.applysolution bool false
Apply the calibration solution to the visibilities. Note
that you should always also inspect the parmdb
afterwards to check that the solutions look
reasonable.

<step>.solint int 1

Number of time slots on which a solution is assumed
to be constant (same as CellSize.Time in BBS). 0
means all time slots. Note that for larger settings of
solint, and specially for solint = 0, the memory
usage of gaincal will be large (all visibilities for a
solint should fit in memory).

<step>.nchan int 0

Number of channels on which a solution is assumed
to be constant (same as CellSize.Freq in BBS). 0
means all channels. When caltype = 'tec' or
'tecandphase', the default is 1, meaning that a TEC
will be fitted through a phase for each channel.

<step>.usemodelcolumn bool false
Use model column. The model column name can be
specified with msin.modelcolumn (default
MODEL_DATA)

<step>.applybeamtomodelcolumn bool false

Apply the beam model (at the phase center) to the
visibilities in the model column. If this option is true,
all options from applybeam are valid as well (except
.invert, since the model data will always be
corrupted for the beam)

<step>.propagatesolutions bool true Use solutions of one time interval as a starting value
for the next time interval

<step>.maxiter int 50 Maximum number of iterations of stefcal

<step>.detectstalling bool true
Detect if the iteration does not converge anymore
and then stop iterating even if maxiter is not
reached

<step>.tolerance float 1.e-5 Tolerance to which the model should match the data

2025-10-26 22:02 27/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

<step>.minblperant int 4
If an antenna has less than minblperant unflagged
data points for a given solution slot, it is not used for
calibration

<step>.timeslotsperparmupdate int 500 Number of solution intervals after which the parmdb
is updated

<step>.debuglevel int 0
Debugging. If debuglevel==1, then a file debug.h5 is
created containing all iterands. This file will be very
large; you can use it to check the convergence
speed etc.

<step>.sourcedb Same as in Predict step
<step>.sources Same as in Predict step
<step>.usebeammodel Same as in Predict step
<step>.applycal.* ApplyCal sub-step, same as in Predict step
<step>.onebeamperpatch Same as in ApplyBeam step
<step>.usechannelfreq Same as in ApplyBeam step
<step>.beammode Same as in ApplyBeam step

DDECal

<step>.type string Case-insensitive step type; must be 'ddecal'.

<step>.sourcedb string Sourcedb (created with `makesourcedb`) with the
sky model to calibrate on.

<step>.directions list []
List of directions to calibrate on. Every element of
this list should b a list of facets. Default: every facet
is a direction.

<step>.usemodelcolumn bool false

Use model data from the measurement set. This
implies solving for one direction, namely the
pointing of the measurement set. If you specify
usemodelcolumn to be true, directions and sourcedb
are not required

<step>.maxiter int 50 Maximum number of iterations.

<step>.detectstalling bool true Stop iterating when no improvement is measured
anymore (after a minimum of 30 iterations).

<step>.stepsize double 0.2 stepsize between iterations.

<step>.h5parm string
Filename of output H5Parm (to be read by e.g.
losoto). If empty, defaults to instrument.h5
within the measurement set.

<step>.solint int 1 Solution interval in timesteps.

<step>.usebeammodel bool false use the beam model. All beam-related options of the
Predict step are also valid.

<step>.mode string diagonal

Type of constraint to apply. Options are
scalarcomplexgain, scalarphase, scalaramplitude,
tec, tecandphase. Modes in development are
fulljones, diagonal, phaseonly, amplitudeonly,
rotation, rotation+diagonal.

<step>.tolerance double 1e-5

Controls the accuracy to be reached: when the
normalized solutions move less than this value, the
solutions are considered to be converged and the
algorithm finishes. Lower values will cause more
iterations to be performed.

<step>.minvisratio double 0
Minimum number of visibilities within a solution
interval, e.g. 0.6 for at least 60% unflagged vis.
Intervals with fewer vis will be flagged.

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

<step>.propagatesolutions bool false Initialize solver with the solutions of the previous
time slot.

<step>.propagateconvergedonly bool false
Propagate solutions of the previous time slot only if
the solve converged. Only effective when
propagatesolutions=true.

<step>.flagunconverged bool false Flag unconverged solutions (i.e., those from solves
that did not converge within maxiter iterations).

<step>.flagdivergedonly bool false

Flag only the unconverged solutions for which
divergence was detected. At the moment, this
option is effective only for rotation+diagonal solves,
where divergence is detected when the amplitudes
of any station are found to be more than a factor of
5 from the mean amplitude over all stations. If
divergence for any one station is detected, all
stations are flagged for that solution interval. Only
effective when flagunconverged=true and
mode=rotation+diagonal.

<step>.approximatetec bool false
Uses an approximation stage in which the phases
are constrained with the piece-wise fitter, to solve
local minima problems. Only effective when
mode=tec or mode=tecandphase.

<step>.maxapproxiter int maxiter/2 Maximum number of iterations during
approximating stage.

<step>.approxchunksize int 0

Size of fitted chunksize during approximation stage
in nr of channels. With approxchunksize=1 the
constraint is disabled during the approx stage (so
channels are solved for independently). Once
converged, the solutions are constrained and more
iterations are performed until that has converged
too. The default is approxchunksize=0, which
calculates the chunksize from the bandwidth
(resulting in 10 chunks per octave of bandwidth).

<step>.approxtolerance double tolerance*10

Tolerance at which the approximating first stage is
considered to be converged and the second full-
constraining stage is started. The second stage
convergences when the tolerance set by the
'tolerance' keyword is reached. Setting
approxtolerance to lower values will cause more
approximating iterations. Since tolerance is by
default 1e-5, approxtolerance is by default 1e-4.

<step>.nchan int 1

Number of channels in each channel block, for which
the solution is assumed to be constant. The default
is 1, meaning one solution per channel (or in the
case of constraints, fitting the constraint over all
channels individually). 0 means one solution for the
whole channel range. If the total number of
channels is not divisable by nchan, some
channelblocks will become slightly larger.

<step>.coreconstraint double 0
Distance in meters. When unequal to 0, all stations
within the given distance from the reference station
(0) will be constraint to have the same solution.

2025-10-26 22:02 29/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

<step>.antennaconstraint list []

A list of lists specifying groups of antennas that are
to be constrained to have the same solution.
Example: “[
[CS002HBA0,CS002HBA1],[CS003HBA0,CS003HBA1]
]” will keep the solutions of CS002HBA0 and 1 the
same, and the same for CS003.

<step>.smoothnessconstraint double 0

Kernel size in Hz. When unequal to 0, will constrain
the solutions to be smooth over frequency by
convolving the solutions with a kernel of the given
size (bandwidth). The default kernel is a Gaussian
kernel, and the kernel size parameter is the 3 sigma
point where the kernel is cut off.

<step>.statfilename string

File to write the step-sizes to. Form of the file is:
“<iterationnr> <normalized-stepsize>
<unnormalized-stepsize>”, and all solution intervals
are concatenated. File is not written when this
parameter is empty.

<step>.uvlambdamin double 0

Ignore baselines / channels with UV < uvlambdamin
wavelengths. Note: also all other variants of uv
flagging described in UVWFlagger (uvmmin,
uvmrange, uvlambdarange, etc) are supported (New
in 3.1).

<step>.subtract bool false Subtracts the corrected model from the data. NOTE
This may not work when you apply a uv-cut.

<step>.useidg bool false Do image-based prediction using IDG.

<step>.idg.images list []

Filename of .fits model images, one per
frequency term. The terms are defined as for a
polynomial source spectra (not logarithmic), e.g. see
this WSClean page. The frequency in the metadata
of the fits files is used as nu0 in the polynomial
evaluation.

<step>.idg.regions string ““ DS9 regions file describing the facets for IDG
prediction.

<step>.idg.buffersize int Based on
memory

Set the amount of timesteps that are to be used for
each IDG buffer

<step>.savefacets bool false Write out each facet as a fits file (named
facet<N>.fits). Only useful when useidg=true.

<step>.onlypredict bool false
Instead of solving, output the predicted visibilities
instead. This is useful for testing, although when
doing faceted prediction with IDG, it might be fast
for certain cases.

<step>.applycal.*
ApplyCal sub-step, same as in Predict step. One can
pass an h5parm with as many directions as set in
“directions” and each direction model is corrupted
accordingly.

Predict

<step>.type string Case-insensitive step type; must be 'predict'

<step>.sourcedb string Path of sourcedb in which a sky model is stored (the
output of makesourcedb)

<step>.sources string
vector [] Patches to use in the predict step of the calibration

https://sourceforge.net/p/wsclean/wiki/ComponentList/

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

<step>.usebeammodel bool false Use the LOFAR beam in the predict part of the calibration

<step>.operation string replace
Should the predicted visibilities replace those being
processed (replace, default), should they be subtracted
from those being processed (subtract) or added to
them (add)

<step>.applycal.*
Set of options for applycal to apply to this predict. For
this applycal-substep, .invert is off by default, so the
predicted visibilities will be corrupted with the parmdb

<step>.onebeamperpatch Same as in ApplyBeam step
<step>.usechannelfreq Same as in ApplyBeam step
<step>.beammode Same as in ApplyBeam step

H5ParmPredict

<step>.type string Case-insensitive step type; must be
'h5parmpredict'

<step>.sourcedb string Path of sourcedb in which a sky model is stored
(the output of makesourcedb)

<step>.applycal.parmdb string Path of the h5parm in which the corruptions are
stored

<step>.applycal.correction string SolTab which contains the directions to be
predicted, or “fulljones”.

<step>.directions string
vector []

List of directions to include. Each of those directions
needs to be in the h5parm soltab. If empty, all directions
in the soltab are predicted. The names of the directions
need to look like [dir1,dir2], where dir1 and dir2
are patches in the sourcedb. By default, the full list of
directions is taken from the H5Parm. The convention for
naming directions in DDECal in H5Parm is
[patch1,patch2]. This directions parameter can be
used to predict / subtract a subset of the directions.

<step>.usebeammodel bool false Use the LOFAR beam in the predict part of the
calibration

<step>.operation string replace
Should the predicted visibilities replace those
being processed (replace, default), should they
be subtracted from those being processed
(subtract) or added to them (add)

<step>.applycal.*
Set of options for applycal to apply to this
predict. For this applycal-substep, .invert is off
by default, so the predicted visibilities will be
corrupted with the parmdb

<step>.onebeamperpatch Same as in ApplyBeam step
<step>.usechannelfreq Same as in ApplyBeam step
<step>.beammode Same as in ApplyBeam step

ApplyBeam

<step>.type string Case-insensitive step type; must be 'applybeam'

2025-10-26 22:02 31/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

<step>.direction string
vector []

A RA/Dec value specifying in what direction to correct
the beam. See phaseshift.phasecenter for syntax. If
empty, the beam is corrected in the direction of the
current phase center.

<step>.onebeamperpatch bool false

Compute the beam only for the center of each patch
(saves computation time, but you should set this to false
for large patches). In the ApplyBeam step, this setting
does not make sense (but it does if the applybeam is
part of predict, ddecal, gaincal, h5parmpredict, etc.).
Generally, FALSE is the right setting for this option. The
default has changed to false in a recent (Nov 2018)
version.

<step>.usechannelfreq bool true

Compute the beam for each channel of the
measurement set separately. This is useful for merged /
concatenated measurement sets. For raw LOFAR data
you should set it to false, so that the beam will be
formed as in the station hardware. Also, setting it to
false is faster.

<step>.updateweights bool false
Update the weights column, in a way consistent with the
weights being inverse proportional to the
autocorrelations (e.g. if 'autoweights' was used before).

<step>.invert bool true

Invert the beam. When applying the beam to transfer
calibration solutions, this should be true. In other words:
invert=true means correcting for the beam,
invert=false means corrupting with the beam. When
using the beam in a predict (or gaincal) step, this option
defaults to false (so it will corrupt for the beam).

<step>.beammode string “default”
Beam mode to apply, can be “array_factor”, “element”
or “default”. Default is to apply both the element beam
and the array factor.

SetBeam

SetBeam is an expert option and should only be used in rare cases. It allows direct manipulation of
the beam-keywords for a column in a measurement set. Normally, DP3 registers whether the
visibilities in a column are corrected for a beam or not, and if so, in what direction the beam was
corrected for. This avoids incorrect corrections / scaling by the beam. However, certain actions can
change the scaling of the visibilities without that the beam keywords are changed, in particular when
predicting (either with DP3 or with another tool). When predicting a single source and not applying
the beam, the visibilities are 'corrected' for the beam in the direction of the source. Under those
circumstances, SetBeam can be used to modify the beam keywords. In that case, set direction to
the source direction and beammode to default.

<step>.type string Case-insensitive step type; must be 'setbeam'

<step>.direction string
vector [] A RA/Dec value specifying in what direction the beam is

corrected.

<step>.beammode string “default”
Beam mode to apply, can be “array_factor”, “element” or
“default”. Default means that sources in the given direction
have corrected (intrinsic) flux values, i.e. they are corrected
for the full beam.

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

UVWFlagger

<step>.type string Case-insensitive step type; must be 'uvwflagger' or
'uvwflag'.

<step>.count.save bool false

If true, the flag percentages per frequency are saved to a
table with extension .flagfreq and percentages per
station to a table with extension .flagstat. The
basename of the table is the MS name (without extension)
followed by the stepname and extension.

<step>.count.path string ”“ The directory where to create the flag percentages table. If
empty, the path of the input MS is used.

<step>.uvmrange string
vector []

Flag baselines with UV within one the given ranges (in
meters). Delimiters .. and +- can be used to specify a
range. E.g., uvmrange = [20..30, 40+-5] flags
baselines with UV in range 20-30 meter and 35-45 meter.

<step>.uvmmin double 0 Flag baselines with UV < uvmmin meter.
<step>.uvmmax double 1e15 Flag baselines with UV > uvmmax meter.

<step>.umrange string
vector [] Flag baselines with U within one of the given ranges (in

meters).
<step>.ummin double 0 Flag baselines with U < ummin meter.
<step>.ummax double 1e15 Flag baselines with U > ummax meter.

<step>.vmrange string
vector [] Flag baselines with V within one of the given ranges (in

meters).
<step>.vmmin double 0 Flag baselines with V < vmmin meter.
<step>.vmmax double 1e15 Flag baselines with V > vmmax meter.

<step>.wmrange string
vector [] Flag baselines with W within one of the given ranges (in

meters).
<step>.wmmin double 0 Flag baselines with W < wmmin meter.
<step>.wmmax double 1e15 Flag baselines with W > wmmax meter.

<step>.uvlambdarange string
vector []

Flag baselines/channels with UV within one the given
ranges (in wavelengths). Delimiters .. and +- can be used to
specify a range. E.g., uvlambdarange = [20..30,
40+-5] flags baselines/channels with UV in range 20-30
wavelengths and 35-45 wavelengths.

<step>.uvlambdamin double 0 Flag baselines/channels with UV < uvlambdamin
wavelengths

<step>.uvlambdamax double 1e15 Flag baselines/channels with UV > uvlambdamax
wavelengths

<step>.ulambdarange string
vector [] Flag baselines/channels with U within one the given ranges

(in wavelengths).
<step>.ulambdamin double 0 Flag baselines/channels with U < ulambdamin wavelengths
<step>.ulambdamax double 1e15 Flag baselines/channels with U > ulambdamax wavelengths

<step>.vlambdarange string
vector [] Flag baselines/channels with V within one the given ranges

(in wavelengths).
<step>.vlambdamin double 0 Flag baselines/channels with V < vlambdamin wavelengths
<step>.vlambdamax double 1e15 Flag baselines/channels with V > vlambdamax wavelengths

<step>.wlambdarange string
vector [] Flag baselines/channels with W within one the given ranges

(in wavelengths).
<step>.wlambdamin double 0 Flag baselines/channels with W < wlambdamin wavelengths

2025-10-26 22:02 33/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

<step>.wlambdamax double 1e15 Flag baselines/channels with W > wlambdamax
wavelengths

<step>.phasecenter string
vector []

If given, use this phase center to calculate the UVW
coordinates to flag on. The vector can consist of 1, 2 or, 3
values. If one value is given, it must be the name of a
moving source (e.g. SUN or JUPITER). Otherwise the first
two values must contain a source position that can be given
in sexagesimal format or as a value followed by a unit. The
third value can contain the direction type; it defaults to
J2000. Possible types are GALACTIC, ECLIPTIC, SUPERGAL,
J2000, B1950 (as defined in the casacore Measures
system).

Split

<step>.type string Case-insensitive step type; must be 'split' or 'explode'

<step>.steps string
vector [] List of next steps; each step will run after this step. E.g.

[average, msout]

<step>.replaceparms string
vector []

The substep keys that should be different for each of the next
steps. Instead of their default type, they should now be a list of
those things. E.g. [average.timestep, msout.name]

Interpolate

The interpolate step replaces flagged values by interpolating them using “neighbouring” samples
(samples close in time and frequency). It calculates the Gaussian weighted sum over non-flagged
samples, with a sigma parameter of one timestep/one channel. The flags are removed after
interpolation. This is in particular useful in combination with averaging; by replacing flagged values
before averaging, the output visibilities will more accurately represent the true sky. This step was
aimed to solve frequency structure from flagging/averaging for the EoR experiment, but might be
useful in other cases as a more accurate averaging step. Details are published in Offringa, Mertens
and Koopmans (2018).

<step>.type string Case-insensitive step type; must be 'interpolate'.
<step>.windowsize int 15 Size of the window over which a value is interpolated. Should be odd.

Description of baseline selection parameters

Parameters to select on baseline can be used in the steps preflagger and filter. The step msin only
supports .baseline. The parameters are described in the table below.

Parameter type default description

.corrtype string ”” Correlation type to match? Must be auto, cross, or an empty string (=
all).

.blrange double
vector []

Zero or more ranges of physical baseline lengths (in m). A baseline
matches if its length is within one of the ranges. E.g.,
blrange=[0,10000, 100000, 1e30]

https://arxiv.org/abs/1901.04752
https://arxiv.org/abs/1901.04752

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 22:02

Parameter type default description

.baseline baseline
vector “”

Names of baselines to be matched. It can be given as either a vector
of vectors or as a casacore MSSelection string. These two methods
are mutually exclusive. When in doubt, use the second syntax.

1. If given as a vector, a vector element can be a vector of two names
giving the stations forming a baseline. For example: baseline=[
[CS001,RS003], [CS002,RS005]] selects baselines CS001-
RS003 and CS002-RS005.
Each name can be a shell-type pattern (with wildcards * ? [] or {}).
Thus baseline=[[CS*,RS*]] selects all baselines between core
and remote stations. Note that the wildcard characters {} mean OR.
They can be used to pair groups of stations (quotes are needed). For
example: baseline=[[“{CS001,CS002}”,“{RS003,RS005}”]
] selects baselines CS001-RS003, CS001-RS005, CS002-RS003, and
CS002-RS005.
Besides giving a baseline, it is also possible to give a single station
name (possibly wildcarded) meaning that all baselines containing
that station will be selected. For example: baseline=[RS*,CS*]
selects all baselines containing remote or core stations. Please note
that an extra bracket pair is needed to specify baselines between RS
and CS like in baseline=[[RS*,CS*]] It is a bit hard to select
international stations using this syntax.

2. The casacore MSSelection baseline syntax is described in this note
and Casacore note 263. The advantage of this syntax is that it is
more concise and that besides a station name pattern, it is possible
to give a station number. The examples above can be expressed as:
baseline=CS001&RS003;CS002&RS005 for baseline CS001-RS003
and CS002-RS005
baseline=CS001,CS002&RS003,RS005 for CS001-RS003, CS001-
RS005, CS002-RS003, and CS002-RS005
baseline=RS*&&CS* for baselines (also auto-corr) between RS and
CS stations.
baseline=8&12 baseline between station number 8 and 12.
Note that & means cross-correlations, && means cross and auto, &&&
means auto only.
International stations can be selected most easily using negation. E.g.
use baseline=^[CR]S*&&* to select all baselines containing an
international station.
use baseline=^[CR]S*&& to select baselines containing ONLY
international stations.

Sometimes the baselines between the HBA ears of the same station
should be deselected, which can be done using the following string
^/(.*)HBA0&\1HBA1/
Without the up-arrow it will select such baselines.

Note: in the msin step only the second way is possible.
Also note that, currently, only the first way works properly when
selecting baselines after a station has been added. The reason is that
the second way looks in the original ANTENNA table to find matching
station names, thus will not find the new station.

https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=public:user_software:documentation:msselection.pdf
https://www.astron.nl/lofarwiki/lib/exe/fetch.php?tok=b5be53&media=http%3A%2F%2Fcasacore.github.io%2Fcasacore-notes%2F263.html

2025-10-26 22:02 35/35 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

From:
https://www.astron.nl/lofarwiki/ - LOFAR Wiki

Permanent link:
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

Last update: 2021-02-26 14:18

https://www.astron.nl/lofarwiki/
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

	[DPPP]
	DPPP
	Important
	Old documentation
	MeasurementSet Access
	Flagging
	Averaging
	Demixing
	Smart Demixing
	Phase shifting
	Upsample
	Station summation
	Data scaling
	Filtering
	Flag statistics and plotting
	Intermediate output step
	User defined step
	Python defined step

	ParSet File
	Description of all parameters
	Counter
	Input
	Output
	Filter
	Upsample
	AOFlagger
	MADFlagger
	PhaseShift
	Demixer
	SmartDemixer
	Averager
	StationAdder
	ScaleData
	PreFlagger
	ApplyCal
	GainCal
	DDECal
	Predict
	H5ParmPredict
	ApplyBeam
	SetBeam
	UVWFlagger
	Split
	Interpolate
	Description of baseline selection parameters

